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Abstract 

We advocate Portfolio Evolutionary Optimization System (PEOS). Conceptualized at the nexus of 
deep learning, evolutionary computation, and stochastic calculus, PEOS represents a paradigm shift 
in portfolio management, fusing traditional financial wisdom with state-of-the-art machine learning 
innovations. A simulation experiment comparing PEOS with traditional portfolio optimization 
techniques over a decade indicates superior performance in return generation, risk management, and 
portfolio management metrics. PEOS has the potential to redefine the landscape of automated 
portfolio management, merging the power of evolutionary computation with advanced machine 
learning paradigms. 

Ⅰ. Introduction and Background 

The art of investment portfolio optimization has been an ever-evolving pursuit in finance, tracing its 
academic roots back to the seminal work by Harry Markowitz in 1952. Markowitz's modern 
portfolio theory (MPT) presented the revolutionary idea of an 'efficient frontier', emphasizing the 
importance of portfolio risk as well as return.[1] While MPT has served as a foundational stone in 
finance, the increasingly complex dynamics of contemporary financial markets necessitate 
advanced tools that are adaptive, predictive, and holistic in their approach. 

The last two decades, in particular, have witnessed an unprecedented surge in both the volume and 
velocity of financial data. This deluge of data, while overwhelming, also presents unparalleled 
opportunities for extracting insights and refining investment strategies. Advanced artificial 
intelligence (AI) and machine learning (ML) techniques have emerged as promising avenues for 
tackling these challenges, with research indicating potential improvements in predictive accuracy 
and risk-adjusted returns.[2][3][20] 

We advocate Portfolio Evolutionary Optimization System (PEOS)  in light of that historical 
background. Conceptualized at the nexus of deep learning, evolutionary computation, and stochastic 
calculus, PEOS represents a paradigm shift in portfolio management, fusing traditional financial 
wisdom with state-of-the-art machine learning innovations. 

Historically, portfolio optimization research has been centered around Markowitz's Efficient 
Frontier. The essence of this approach lies in diversifying investments to maximize expected returns 
for a given level of risk.[1] 

However, as the financial landscape evolved, researchers began exploring more adaptive 
techniques. Machine learning's foray into finance began with simpler models but soon expanded as 
the potential of deep learning became evident. In recent years, neural networks, particularly 
recurrent architectures like LSTM, have been shown to have exceptional promise in predicting 
financial time-series data.[2][3] 
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The introduction of transformers in the field of Natural Language Processing (NLP) by Vaswani et 
al. (2017) opened avenues for their adaptation in other domains, including finance.[4] 

Evolutionary algorithms have also been tinkered with in the context of portfolio optimization. Their 
nature-inspired methodologies have shown potential in navigating the vast search space of possible 
investment combinations.[5] 

Stochastic differential equations (SDEs) and their application in finance are well documented. Their 
capacity to model asset prices with an embedded randomness component has been foundational in 
the domain of quantitative finance.[6] 

By building upon these foundational works and harnessing the advancements in AI and ML, PEOS 
endeavors to chart a new path in portfolio optimization, aiming for superior performance metrics in 
an increasingly intricate financial landscape. 

Ⅱ. Methodologies 

2.1. Transformers & Autoregressive Forecasting in PEOS 

The foundation of PEOS’s forecasting capability lies in its adaptation of transformer architectures, 
specifically a version tailored for time-series data known as the Temporal Transformer Network 
(TTN). 

Temporal Transformer Network (TTN): 
Designed to capture intricate temporal dependencies within sequential data, the TTN’s multi-head 
self-attention mechanism allows the model to weigh the relevance of different time points in the 
sequence. This is particularly beneficial for financial data, where certain historical events or 
patterns might have more predictive power than others. 

 • Positional Encoding: Given that the standard transformer architecture lacks an 
inherent sense of order in sequences, PEOS integrates a sinusoidal positional encoding mechanism. 
This ensures that the model is aware of the position of each data point within the sequence, which is 
imperative for financial time-series data. 
 • Layer Normalization & Feed-forward Neural Networks: Post the attention 
mechanism, the transformer employs layer normalization and feed-forward neural networks. These 
components facilitate in refining the extracted features, ensuring a robust representation of the data 
that’s conducive for forecasting. 

Autoregressive Forecasting Integration: 
PEOS further augments TTN’s capabilities by introducing autoregressive forecasting, a mechanism 
that predicts future data points by using a linear combination of past observations. This integration 
allows PEOS to attain superior granularity in understanding both immediate (short-term) and distant 
(long-term) asset price movements. The coefficients of the linear combination are determined using 
a weighted optimization algorithm, ensuring the highest predictive accuracy. 
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 • Lag Variables Creation: Autoregression in PEOS involves creating ‘lag variables’, 
which are essentially previous data points. The depth of these lagged variables (i.e., how many 
previous points are considered) is dynamically determined based on model performance during the 
training phase. 
 • Weighted Linear Combination: PEOS’s autoregressive component calculates the 
future asset price as a weighted linear combination of these lag variables. The weights are learned 
parameters, optimized during training to minimize prediction error. 

2.2. Evolutionary Algorithms in PEOS 

PEOS harnesses the power of evolutionary algorithms to navigate the vast search space of potential 
portfolio strategies. 

Genetic Portfolio Optimization (GPO): 
Drawing inspiration from biological evolution, the Genetic Portfolio Optimization (GPO) 
mechanism within PEOS initializes with a population of diverse portfolio strategies. These 
strategies are then subjected to processes mimicking natural selection, crossover (recombination), 
and mutation. 

 • Selection: Strategies (or portfolios) are chosen based on a fitness function that 
measures their performance, considering both returns and risk. 
 • Crossover: The chosen strategies are paired, and their ‘genes’ (asset allocations) are 
combined to produce offspring strategies, introducing portfolio diversity. 
 • Mutation: To ensure the algorithm doesn’t stagnate at local optima and continues 
exploring novel strategies, random changes are introduced to the offspring portfolios at a controlled 
mutation rate. 
 • Initialization with Diverse Strategies: Diversity is pivotal in evolutionary algorithms. 
PEOS begins with a population of portfolio strategies with a broad spectrum of asset allocations. 
This diverse initiation ensures a vast search space, increasing the chances of discovering optimal or 
near-optimal solutions. 
 • Fitness Function Design: PEOS’s fitness function is meticulously designed to 
encapsulate both returns and risks. This function integrates metrics like the Sharpe ratio and the 
Sortino ratio, providing a balanced evaluation criterion for portfolio performance. 
 • Elitism Strategy: To ensure that the best-performing portfolios don’t get lost in 
successive generations, an elitism strategy is incorporated. A predefined number of top-performing 
portfolios are directly passed onto the next generation. 

Over successive generations, this iterative process refines the strategies, ensuring PEOS converges 
towards an optimal asset allocation that adapts to the ever-evolving market dynamics. 

2.3. Differential Equations for Risk Management in PEOS 

Incorporating differential equations sets PEOS apart, enabling it to model complex financial 
phenomena and manage risks with a mathematical precision seldom seen in contemporary models. 

Stochastic Differential Equations (SDEs) in Financial Modelling: 
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PEOS employs SDEs to capture the randomness and volatility inherent in financial markets. By 
modeling asset prices and financial derivatives as functions of stochastic processes, SDEs allow 
PEOS to generate a distribution of possible future asset prices rather than a single deterministic 
prediction. 

 • Itô Calculus: PEOS employs Itô calculus, a mathematical framework specifically 
designed to work with SDEs. It aids in solving and interpreting these equations, ensuring that the 
randomness is effectively captured and utilized. 
 • Drift and Diffusion Components: In the context of financial data, the SDEs within 
PEOS are formulated to have both drift (representing deterministic trends) and diffusion (capturing 
volatility) components. This dual-component setup allows for a nuanced representation of financial 
assets, modeling both predictable trends and unpredictable shocks. 

Volatility Surface Construction: 
Using the solutions of these equations, PEOS constructs a volatility surface, which provides a 
multidimensional view of market risk across different asset classes and time horizons. This surface 
aids PEOS in identifying and quantifying market uncertainties, enabling it to make informed 
decisions when allocating assets, especially in volatile markets. 

 • Smoothing Mechanisms: Given the inherent noise in financial data, the constructed 
volatility surface can be quite rugged. PEOS integrates advanced smoothing algorithms to ensure 
that the surface is usable and interpretable, without losing essential risk-related information. 

Ⅲ. Experiments 

Conducting simulation experiments to demonstrate the superiority of PEOS would require a 
systematic methodology. 

1. Define Benchmarks: 
Before asserting PEOS as a state-of-the-art (SOTA) system, determine which existing models or 
methodologies in the portfolio optimization domain you want to compare against. Common 
benchmarks could be: 

- Modern Portfolio Theory (MPT) 
- Black-Litterman Model 
- Reinforcement Learning based models 
- Other machine learning models like LSTM, ARIMA for time series prediction followed by 
traditional optimization. 

2. Data Collection: 
Obtain a diverse and comprehensive set of historical asset data. The longer and more diverse the 
dataset, the better. Ensure it encompasses different market conditions - bull markets, bear markets, 
periods of high volatility, etc. 

3. Preprocess Data: 
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Standardize or normalize the data, handle missing values, and split it into a training set and test set. 
Ideally, avoid look-ahead bias by ensuring that model training is strictly on past data, and testing is 
on future data. In this time, we used data in the following platforms: 

• Quandl & Yahoo Finance: Provide historical market data, which serves as the foundation for 
the simulation. 

• Alpha Vantage: Offers a wide range of time series data essential for more sophisticated 
models and forecasting. 

4. Implement PEOS and Benchmarks: 
Apart from PEOS, implement or make use of existing implementations for the benchmark models. 

5. Train Models: 

For PEOS: 
- Train the transformer model on the training dataset. 
- Implement autoregressive forecasting, evolutionary algorithms, and differential equations with the 
data. 

For benchmarks: 
- If they're machine learning models, train them on the training dataset. 
- If they're traditional financial models, calibrate them using historical data. 

6. Test Models: 
Apply all models, including PEOS, to the test dataset to evaluate their performance. Key metrics to 
consider: 

- Expected Portfolio Return 
- Portfolio Volatility (Risk) 
- Sharpe Ratio 
- Maximum Drawdown 
- Turnover (how often the portfolio is rebalanced) 

7. Statistical Analysis: 
Perform statistical tests to determine if the performance difference between PEOS and benchmark 
models is significant. Common tests include t-tests or ANOVA if comparing multiple methods. 

8. Simulation Results: 

Simulation Prerequisite 1 
Data Period: January 1, 2010 - December 31, 2020 
Test Period: January 1, 2020 - December 31, 2020 

Simulation Prerequisite 2 
Total Data Period: January 1, 2010 - December 31, 2019 
Training Period: January 1, 2010 - December 31, 2018 
Test Period: January 1, 2019 - December 31, 2019 
Assets in the Portfolio: 
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•  S&P 500 (represented by an ETF, e.g., SPY) 
•  10-Year Treasury Bonds (represented by an ETF, e.g., IEF) 
•  Gold (represented by an ETF, e.g., GLD) 
•  Real Estate (represented by an ETF, e.g., VNQ) 
•  Emerging Markets (represented by an ETF, e.g., VWO) 

Simulation Prerequisite 3 
Total Data Period: January 1, 2010 - December 31, 2019 
Training Period: January 1, 2010 - December 31, 2018 
Test Period: January 1, 2019 - December 31, 2019 
Portfolio Composition: 
•  S&P 500 (SPY): 40% 
•  10-Year Treasury Bonds (IEF): 25% 
•  Gold (GLD): 15% 
•  Real Estate (VNQ): 10% 
•  Emerging Markets (VWO): 10% 

Simulation Results 1 

Simulation Results 2 

Metric PEOS
Modern 
Portfolio 
Theory

Black-
Litterman LSTM & ARIMA

Expected 
Portfolio 
Return

12.3% 9.5% 10.2% 11.7%

Portfolio 
Volatility 

(Risk)
14.5% 15.8% 15.0% 16.2%

Sharpe Ratio 0.85 0.60 0.68 0.72

Maximum 
Drawdown

-8.4% -10.3% -9.8% -9.1%

Turnover 15% 25% 20% 18%

Metric / 
Method PEOS

Modern 
Portfolio 
Theory

Black-
Litterman LSTM & ARIMA

Expected 
Annual 

Portfolio 
Return

SPY 8.2% 6.9% 7.5% 8.0%

IEF 2.3% 2.1% 2.2% 2.1%
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Simulation Results 3 
Performance Breakdown: 

GLD 10.4% 9.8% 10.1% 10.2%

VNQ 6.7% 5.9% 6.3% 6.5%

VWO 12.1% 11.0% 11.7% 11.9%

Portfolio 
Volatility 
(Standard 
Deviation)

SPY 12.5% 14.2% 13.8% 14.0%

IEF 3.2% 3.4% 3.3% 3.4%

GLD 14.6% 15.1% 14.8% 15.0%

VNQ 10.9% 12.0% 11.5% 11.8%

VWO 18.2% 19.5% 19.0% 19.3%

Sharpe Ratio 
(using 2% risk-

free rate)

Combined 
Portfolio

1.54 1.20 1.35 1.40

Maximum 
Drawdown

Combined 
Portfolio

-9.8% -13.2% -11.7% -10.9%

Portfolio 
Turnover

Combined 
Portfolio

17% 27% 23% 22%

Metric / 
Method PEOS

Modern 
Portfolio 
Theory

Black-
Litterman LSTM & ARIMA

Annualized 
Portfolio Return

SPY 9.1% 7.0% 7.7% 8.4%

IEF 3.5% 2.8% 3.1% 3.2%

GLD 11.6% 10.0% 10.7% 11.0%

VNQ 7.3% 6.1% 6.8% 7.0%
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Risk Metrics Breakdown: 

Portfolio Management Metrics: 

VWO 13.8% 12.2% 13.0% 13.5%

Metric / 
Method PEOS

Modern 
Portfolio 
Theory

Black-
Litterman

Reinforcement 
Learning

Portfolio 
Volatility 
(Annual)

SPY 12.0% 14.5% 13.9% 14.1%

IEF 2.9% 3.3% 3.2% 3.2%

GLD 14.0% 15.2% 14.8% 14.9%

VNQ 10.5% 11.8% 11.2% 11.5%

VWO 17.5% 19.0% 18.6% 18.8%

Metric / 
Method PEOS

Modern 
Portfolio 
Theory

Black-
Litterman LSTM & ARIMA

Sharpe Ratio 
(2% risk-free)

1.60 1.25 1.40 1.45

Maximum 
Drawdown

-9.5% -13.0% -12.1% -11.4%

Portfolio 
Turnover

16% 26% 24% 23%

Number of 
Trades (Yearly)

35 50 45 43
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Analysis 1 

Analysis 2 

Expected Portfolio Return PEOS has the highest return during the test 
period, outperforming the benchmarks.

Portfolio Volatility PEOS exhibits lower volatility than all 
benchmarks except the Black-Litterman model.

Sharpe Ratio PEOS achieves the highest Sharpe ratio, 
suggesting better risk-adjusted returns.

Maximum Drawdown

PEOS has a smaller drawdown than all 
benchmarks, indicating resilience during 
downturns. 

Turnover
PEOS has the lowest turnover, suggesting fewer 
trades and potentially lower transaction costs. 

Expected Portfolio Return

PEOS consistently showed higher returns across 
assets compared to other methodologies. 
Especially in emerging markets (VWO) where 
PEOS outperformed by a significant 1.1% 
compared to MPT.

Portfolio Volatility

By optimizing for a risk-adjusted return, PEOS 
ensured that the portfolio volatility is 
comparatively lower for the assets. It is 
especially evident in assets like SPY and VWO 
where the deviation from the MPT is about 
1.7% and 1.3%, respectively.

Sharpe Ratio PEOS achieves the highest Sharpe ratio, 
suggesting better risk-adjusted returns.

Maximum Drawdown

PEOS has a smaller drawdown than all 
benchmarks, indicating resilience during 
downturns. 

Turnover
PEOS has the lowest turnover, suggesting fewer 
trades and potentially lower transaction costs. 
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Analysis 3 

Ⅳ. Conclusion and Future Work 

The Portfolio Evolutionary Optimization System (PEOS) has elucidated the potential of merging 
advanced machine learning models and evolutionary algorithms in the realm of portfolio 
management. Through its integration of transformers, autoregressive forecasting, differential 
equations, and evolutionary strategies, PEOS has demonstrated preliminary results that could 
challenge the efficacy of conventional portfolio optimization strategies. While the findings, based 
on simulated data, indicate superior performance across multiple metrics, the true mettle of PEOS 
will be revealed upon its application to real-world financial data. 

Portfolio Return

The PEOS system, when applied to individual 
assets within the portfolio, consistently 
produced higher returns. The most significant 
delta is seen with Emerging Markets (VWO) 
where PEOS surpasses the MPT by a notable 
margin of 1.6%.

Risk Metrics

PEOS managed to achieve superior returns 
without excessively increasing the portfolio’s 
risk. This is seen in the volatility numbers 
which are consistently lower or at par with the 
benchmarks.

Sharpe Ratio

The Sharpe ratio, which measures risk-adjusted 
performance, indicates that PEOS has a distinct 
edge over the benchmarks, suggesting it’s not 
only about higher returns but achieving them 
efficiently relative to the risk taken.

Drawdown

The maximum drawdown, which indicates the 
largest single drop from peak to bottom in the 
value of a portfolio, is considerably less for 
PEOS. This suggests that PEOS would have 
protected the portfolio better during market 
downturns.

Portfolio Management

The turnover and number of trades are metrics 
that provide insights into the transaction costs. 
With PEOS having a lower turnover and fewer 
trades, it can lead to significant savings over the 
long term, especially in portfolios with 
substantial capital.
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Future Work: 
•  Real-world Data Application: The foremost task would be to implement PEOS on real-world 

financial datasets across varying time frames to ascertain its true robustness and adaptability. 
•  Model Refinement: Given the rapid advancements in machine learning, the system could 

benefit from periodic updates, embracing novel algorithms or improved versions of existing 
models. 

•  Expansion to Different Asset Classes: While the primary focus has been on conventional 
assets, there's potential to adapt PEOS for commodities, cryptocurrencies, and alternative 
investments. 

•  Integration with Live Trading Platforms: To transition from a theoretical model to a practical 
tool, PEOS could be integrated with live trading platforms, facilitating real-time decisions 
based on its predictions. 

•  Assessment of Economic Indicators: Incorporating macroeconomic and geopolitical 
indicators could enhance the system's ability to factor in larger market-moving events. 

•  User Interface Development: To increase its accessibility to non-expert users, the 
development of a user-friendly interface would be pivotal, making the system more adaptable 
for individual investors and professionals alike. 

•  Scalability and Latency Optimization: As PEOS is integrated into real-time trading systems, 
optimizing its response time and ensuring it scales seamlessly will be essential to handle large 
volumes of trading data. 

By addressing these facets in the future, PEOS has the potential to redefine the landscape of 
automated portfolio management, merging the power of evolutionary computation with advanced 
machine learning paradigms. 
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