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Abstract 

This article explores the sophisticated concept of whole-brain emulation (WBE) from the 
perspective of quantum mechanics, particularly focusing on the Schrödinger equation. Building 

upon the principles of matter waves and wave mechanics, it investigates the potential implications 
of applying quantum principles to the realm of cognitive science. The analysis of the brain’s 
complex nature, integrating myriad interrelated neural networks, is recast within a quantum 

mechanical framework, highlighting new paradigms for understanding cognitive processes and 
potentially leading to substantial advancements in the field of brain emulation. As an application of 
that theory, we also have developed QuantumBERT (Q-BERT) and Quantum-Point Voxel CNN (Q-
PVCNN) based on Whole-brain emulation and Schrodinger equation. They showed superiority over 

existing machine learning models in several benchmarks. 
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Ⅰ. Introduction 

　Whole-brain emulation constitutes a radical intersection of neuroscience, cognitive psychology, 
artificial intelligence, and quantum mechanics. The endeavor to transcribe the intricate, dynamic 
web of neuronal interactions into a computable format has been the holy grail for researchers in 
these disciplines.[6] Leveraging the Schrödinger equation, which governs the behavior of quantum 
systems, can potentially provide new vistas for understanding and emulating the brain's complex 
neural matrix.  

　Historically, the Schrödinger equation has been indispensable in describing the state of motion of 
matter particles, notably electrons. The wave function, denoted by Ψ(r, t), exemplifies the 
probabilistic nature of quantum mechanics, detailing a particle's state at any given point in time. 
This wave function's temporal variation is subject to the Schrödinger equation, iℏ∂Ψ/∂t = HΨ, 

where ℏ is the Dirac constant, and H is the Hamiltonian operator representing the energy of the 

system. For a particle of mass m under an external force with potential V(r), H encapsulates the 
kinetic and potential energies, expressed as H = - (ℏ^2/2m)∇^2 + V.[1][17] 

　In the realm of WBE, we hypothesize that the brain's neuronal ensemble can be quantitatively 
modeled using Schrödinger’s equation. This daring leap into the microscopic domain implies an 
immense escalation in complexity. In this scheme, each neuron or neural circuit is characterized by 
its wave function, which follows the deterministic evolution dictated by the Schrödinger equation. 
The Hamiltonian operator would encompass not only the physical parameters of the neuronal 
assembly but also the intricate dynamics of synaptic interactions and neural network configurations. 

　The Herculean task of applying the Schrödinger equation to the brain's complexity is fraught with 
several challenges. The most fundamental is the vast number of neurons and synapses in the human 
brain, estimated to be on the order of 10^11 and 10^15 respectively[21], rendering an analytic 
solution to such an immense system practically unfeasible. The individual consideration of neuronal 
quantum states would mandate a high-dimensional Hilbert space, exponentially complicating the 
quantum system's dimensionality. 

　Despite these obstacles, exploring the quantum mechanical perspective in the context of WBE 
can yield profound insights.[6] The inherently probabilistic nature of quantum mechanics may serve 
as an apt framework for capturing the non-deterministic and stochastic aspects of neuronal 
dynamics. The Heisenberg uncertainty principle could potentially be integrated into a novel model 
of cognitive uncertainty, and the principle of superposition could provide an innovative approach to 
understanding the brain's parallel processing capabilities. 

　The utilization of Schrödinger's equation to describe the quantum mechanical behavior of the 
brain's components provides a novel and potentially fruitful approach to whole-brain emulation. 
Despite the multitude of complexities and challenges inherent in this pursuit, this  
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work advances the cross-disciplinary fusion of quantum mechanics and cognitive science, 
illuminating new pathways for understanding the human brain's intricacies and emulating its 
capabilities. 

Ⅱ. Whole-Brain Emulation through the Lens of the Schrödinger 
Equation 

Definition 1 (Quantum Neuron State): Let us represent the state of a single neuron by a wave 
function Ψ(r, t) in the Hilbert space H. We assume that Ψ(r, t) completely characterizes the neuron’s 
state, including its membrane potential, firing rate, and other properties. 

Definition 2 (Neural Hamiltonian): For a single neuron, the Hamiltonian operator H is a function 
that encapsulates the neural properties and interactions in the system. 

Theorem 1 (Neural Schrödinger Equation): The temporal evolution of a neuron’s state obeys the 
Schrödinger equation: 

iℏ∂Ψ/∂t = HΨ. 

Proposition 1 (Superposition Principle): The superposition principle states that any linear 
combination of solutions to the Schrödinger equation is also a solution. 

Proof: This follows directly from the linearity of the Schrödinger equation, which states that if  
and  are solutions, then so is any combination , where a and b are complex numbers. 

Corollary 1: Given the superposition principle, a neuron’s state could be in a superposition of 
multiple states, indicating the potential for massively parallel processing capabilities. 

Remark: While the formalism proposed here provides a promising avenue for research, it’s 
important to note that the task of scaling this model to encompass the complex, interconnected 
system of neurons in the human brain remains a monumental challenge. 

Definition 3 (Neural Hilbert Space): Given N neurons in a brain, the Hilbert space H of the 
system is given by the tensor product of individual neuron Hilbert spaces, i.e.,  

. 

Definition 4 (System Wave Function): The wave function Ψ of the entire system is an element of 
the neural Hilbert space H. 

Definition 5 (System Hamiltonian): The Hamiltonian operator H for the whole system is defined 
as the sum of individual neuron Hamiltonians plus interaction Hamiltonians, i.e.,   

Ψ1
Ψ2 aΨ1 + bΨ2

H = H1 ⊗ H2 ⊗ … ⊗ HN

H = ΣHi + ΣHi j
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where i ≠ j, and ,  represent the Hamiltonian for the i-th neuron and the interaction Hamiltonian 
between the i-th and j-th neuron, respectively. 

Theorem 2 (System Schrödinger Equation): The temporal evolution of the system’s state obeys 
the Schrödinger equation: 

iℏ∂Ψ/∂t = HΨ. 

Proposition 2 (Eigenvectors and Eigenvalues): The eigenfunctions of the Hamiltonian H are the 
stationary states of the system, and the corresponding eigenvalues are the possible outcomes of a 
measurement of the system’s total energy. 

Lemma 1 (Orthonormality): The eigenfunctions of the Hamiltonian form an orthonormal basis for 
the Hilbert space. 

Corollary 2: The state of the neural system can be expressed as a linear combination 
(superposition) of the eigenstates of the Hamiltonian. 

Remark: This framework is highly idealized and neglects many biological details, such as the role 
of neurotransmitters, plasticity, and the nonlinearity of many neural processes. Furthermore, it 
presupposes the validity of quantum mechanics at macroscopic scales, which is a highly debated 
topic in the field of quantum physics. 

Definition 6 (Time Evolution Operator): The time evolution of the state Ψ from time t to time t’ is 
governed by the time evolution operator , such that , where  

. 

Proposition 3 (Born Rule): The probability of obtaining a measurement result corresponding to 
eigenvalue E in a state Ψ is given by the Born Rule, , where |E⟩ is the eigenstate 
of the Hamiltonian associated with eigenvalue E, and ⟨E|Ψ⟩ is the projection of Ψ onto this 
eigenstate. 

Theorem 3 (Perturbative Solution): In the presence of a small perturbation to the Hamiltonian, 
denoted by V, the evolution of the state Ψ can be approximated using time-dependent perturbation 
theory. 

To first order in V, this gives the state at time t as: 

, 

where  is the solution to the Schrödinger equation in the absence of the perturbation and 
 is the time evolution operator. 

Lemma 2 (Adiabatic Approximation): If changes in the system Hamiltonian occur slowly 
compared to the system’s characteristic time scales, the state of the system stays close to an  

Hi Hij

U(t′ , t) Ψ(t′ ) = U(t′ , t)Ψ(t)

U(t′ , t) = e( − iH(t′ − t)/ℏ)

P(E) = |⟨E |Ψ⟩ |2

Ψ(t) ≈ Ψ0(t) − (i /ℏ) ∫ f rom0totdt′ U(t, t′ )V(t′ )Ψ0(t′ )

Ψ0(t)
U(t, t′ )
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eigenstate of the instantaneous Hamiltonian, i.e., , where  is an eigenstate of the 
instantaneous Hamiltonian. 

Corollary 3: Under the adiabatic approximation, the evolution of the system can be calculated 
using the instantaneous eigenstates of the Hamiltonian, providing a potential simplification in the 
description of the neural system dynamics. 

Remark: The use of perturbation theory and adiabatic approximations indicate ways of managing 
the complexity of the full quantum description of a neural system. However, the applicability of 
these techniques to actual neural systems remains to be validated empirically. 

Definition 7 (Density Operator): The statistical state of a neural system, especially when we don’t 
have complete information about the system, can be described by a density operator ρ, where ρ = |
Ψ⟩⟨Ψ| for a pure state |Ψ⟩, and the general form for a mixed state is 

. 

Theorem 4 (Von Neumann Equation): The temporal evolution of the density operator obeys the 
Von Neumann equation, dρ/dt = -i/ℏ [H, ρ], where [H, ρ] denotes the commutator of H and ρ. 

Proposition 4 (Measurement Postulate): In a measurement of an observable Q in the state ρ, the 
probability of obtaining the result q is , where  is the projector onto the eigenspace of Q 
corresponding to the eigenvalue q, and Tr denotes the trace. 

Lemma 3 (Decoherence): In the presence of interaction with an environment, off-diagonal 
elements of the density operator in the basis of the system’s Hamiltonian decay over time, a process 
known as decoherence. This is modeled by a master equation of the form dρ/dt = -i/ℏ [H, ρ] + L(ρ), 

where L is a superoperator that models the system-environment interaction. 

Corollary 4 (Classical Limit): In the limit of large decoherence, the quantum behavior of the 
neural system approaches that of a classical stochastic system, with the density operator 
approximating a probability distribution. 

Remark: These advanced mathematical constructs help model the complex dynamics of neural 
systems, including effects such as quantum decoherence due to interaction with the environment, 
which could potentially play a significant role in neural dynamics. 

Definition 8 (Entanglement): For a composite system described by the state , 
the state is said to be entangled if it cannot be written as a product of states from  and , i.e., 
if  for any  and . 

Definition 9 (Entanglement Measure): The von Neumann entropy, , of 
the reduced density operator  for subsystem A is a measure of the entanglement of the 
state (ρ) for bipartite systems. 

Ψ(t) ≈ Ψn(t) Ψn(t)

ρ = Σpi |Ψi⟩⟨Ψi | , wit hΣpi = 1

Tr(ρPq) Pq

( |Ψ⟩ ∈ H1 ⊗ H2)
(H1) (H2)

( |Ψ⟩ ≠ |ψ1⟩ ⊗ |ψ2⟩) ( |ψ1⟩ ∈ H1) ( |ψ2⟩ ∈ H2)

(S(ρ) = − Tr(ρ log2(ρ)))
(ρA = TrB(ρ))
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Theorem 5 (Schmidt Decomposition): Any bipartite pure state  can be 
expressed as , where  are non-negative Schmidt coefficients and 

 and  are orthonormal bases in  and . 

Lemma 4 (Unitary Evolution): For a closed quantum system, the evolution is unitary, described 
by  where  is a unitary operator and (U^†(t)) is its conjugate 
transpose. 

Definition 10 (Quantum Channel): A quantum operation Λ acting on a density operator (ρ) to 
produce an output state Λ(ρ) is a completely positive, trace-preserving map. 

Proposition 5 (Kraus Representation): Any quantum operation Λ can be represented using a set of 
Kraus operators  such that  where . 

Corollary 5 (Stinespring Dilation): For every quantum operation Λ with Kraus representation , 
there exists a unitary operator (U) acting on a larger Hilbert space and a pure state (|φ⟩) such that  

. 

Remark: Quantum channels provide a framework to study the effects of noise, environment 
interactions, and other perturbations on the state of the neural system. This helps in understanding 
the stability of quantum phenomena, such as entanglement, in the presence of realistic constraints. 

Definition 11 (Tensor Network): A tensor network is a graphical representation of tensors 
connected by links, where each tensor is represented by a node, and each link corresponds to a 
contracted index between tensors. Common tensor network structures include Matrix Product States 
(MPS) and Projected Entangled Pair States (PEPS). 

Lemma 5 (Tensor Contraction): The contraction of two tensors,  and , over an index (i) is 
represented mathematically as , where (α) and (β) are the remaining uncontracted 
indices. 

Theorem 6 (Area Law for Entanglement Entropy): For ground states of many local 
Hamiltonians in one and two dimensions, the entanglement entropy  of a subsystem (A) 
scales proportionally to the boundary of (A) rather than its volume. 

Definition 12 (Quantum Error-Correcting Code): A quantum error-correcting code is a subspace 
(C) of a larger Hilbert space (H) such that if any error from a predefined set of errors (E) occurs on 
a state (|Ψ⟩ ∈ C), the error can be detected and corrected without measuring (|Ψ⟩). 

Lemma 6 (Quantum Singleton Bound): For a quantum error-correcting code that corrects (t) 
errors, the relation (2t + d ≤ n + 2) must hold, where (d) is the distance of the code, and (n) is the 
number of physical qubits. 

( |Ψ⟩ ∈ H1 ⊗ H2)
( |Ψ⟩ = Σiλi |αi⟩1 ⊗ |βi⟩2) (λi)

( |αi⟩1) ( |βi⟩2) (H1) (H2)

(ρ(t) = U(t)ρ(0)U†(t)) (U(t) = e−iHt/ℏ)

Ek (Λ(ρ) = ΣkEkρE †
k ) (ΣkE †

k Ek = I )

Ek

(Λ(ρ) = TrB(U(ρ ⊗ |φ⟩⟨φ | )U†))

(A) (B)
(Cαβ = ΣiAαiBβi)

(S(ρA))
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Proposition 6 (Entanglement Spectrum): Given a reduced density matrix  of a bipartite 
system described by (|Ψ⟩), the set of eigenvalues of  is called the entanglement spectrum. 
This spectrum is often used to characterize quantum phase transitions and topological order. 

Corollary 6 (Topological Order): States with non-trivial topological order will have a robust 
entanglement spectrum, exhibiting a degeneracy which remains even in the presence of local 
perturbations. 

Remark: Quantum phases of matter, error correction, and the formalisms of tensor networks offer 
advanced tools to understand, simulate, and potentially harness quantum effects in systems as 
complex as the brain. It’s worth noting, however, that the applicability of these concepts to whole-
brain emulation is purely speculative and lies at the intersection of cutting-edge quantum physics 
and neuroscience research. 

Definition 13 (Quantum Neural Network): A hypothetical network of neurons where quantum 
entanglement between neural components leads to superposition states that can facilitate parallel 
processing or enhanced computational capacity. 

Lemma 7 (Neural Superposition): Suppose the internal state of a neuron, perhaps at the level of 
ion channels or microtubules, can be in a quantum superposition of firing and non-firing states, 
given by (|Ψ⟩ = α|firing⟩ + β|non-firing⟩), where  and  represent the probabilities of 
observing each state. 

Theorem 7 (Quantum Parallelism in Neural Networks): If neurons can exploit quantum 
superposition, a neural network could, in principle, evaluate many possible pathways 
simultaneously, potentially offering an advantage in solving certain computational problems. 

Definition 14 (Quantum Entanglement in Neural Systems): Suppose that two or more neural 
components are quantum mechanically entangled. This could lead to correlations in their behaviors, 
potentially facilitating faster or more complex information processing. 

Lemma 8 (Decoherence Time in Neural Systems): Given the warm and wet environment of the 
brain, quantum states would likely decohere rapidly. For a quantum brain hypothesis to be viable, 
the coherence time of neural quantum states must be comparable to typical neural processing 
timescales. 

Proposition 7 (Quantum Tunneling in Neural Systems): Quantum tunneling might facilitate 
certain ion channel dynamics or neurotransmitter release mechanisms, potentially speeding up 
neural transmission or processing. 

Corollary 7 (Enhanced Neural Sensitivity): If neurons are sensitive to quantum effects, it might 
explain certain phenomena, such as the ability to detect weak magnetic fields or the proposed 
mechanism behind bird navigation. 

Remark: The hypotheses that the brain might exploit quantum phenomena have been proposed as a 
way to explain its remarkable computational capabilities. However, evidence for these quantum 
phenomena in the brain is sparse, and the biological feasibility of such mechanisms is debated  

(ρA)
(−log(ρA))

( |α |2 ) ( |β |2 )
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among scientists. Bridging the gap between quantum mechanics and neuroscience requires rigorous 
experimental evidence, and while theoretically fascinating, the quantum brain hypothesis remains a 
topic of ongoing research. 

Definition 15 (Neural State Vector): Let (|N⟩) represent the quantum state of a single neuron, 
where: 

[ |N⟩ = α|active⟩ + β|inactive⟩ ] 

with  and  being the probability amplitudes for the neuron being in the active and 
inactive states respectively. 

Lemma 9 (Neuronal Entanglement): Given two neurons A and B, if their states are entangled, 
their joint state can be written as: 

 

where γ and δ are complex coefficients. 

Definition 16 (Neural Hamiltonian): The time evolution of a neuron’s quantum state is governed 
by an effective Hamiltonian . In the simplest model: 

 

where  represents the energy difference between active and inactive states. 

Theorem 8 (Neural Quantum Evolution): The state of a neuron evolves in time as per the 
Schrödinger equation: 

 

Proposition 8 (Neural Quantum Measurement): Upon measurement of a neuron’s state, the 
quantum state collapses to either  or  with probabilities  and  
respectively. 

Definition 17 (Neural Quantum Field): The collective quantum behavior of a network of neurons 
can be represented by a neural quantum field , where  represents the position in the 
brain and  is time. 

Lemma 10 (Quantum Neuron Interactions): The interaction between neurons can be described 
by an interaction term  in the Hamiltonian: 

 

where  is the conjugate transpose of the neural quantum field and  represents neighboring 
neuron positions. 

( |α |2 ) ( |β |2 )

[ |Φ⟩ = γ |act ive⟩A ⊗ | inact ive⟩B + δ | inact ive⟩A ⊗ |act ive⟩B]

(HN)

[HN = ε |act ive⟩⟨act ive | − ε | inact ive⟩⟨inact ive | ]

(ε)

[iℏd |N⟩/dt = HN|N⟩]

( |act ive⟩) ( | inact ive⟩) ( |α |2 ) ( |β |2 )

(Ψ(x, t)) (x)
(t)

(V)

[Hinteraction = V(Ψ†(x, t)Ψ(x′ , t′ ))]

(Ψ†) (x′ )

Massachusetts Institute of Mathematics 9

Whole-Brain Emulation through the Lens of the Schrödinger Equation

Corollary 8 (Neural Superposition Principle): Given the linearity of the Schrödinger equation, 
any linear combination of solutions is also a solution, allowing for a superposition of neural states 
that can represent and process information in parallel. 

Remark: This mathematical structure provides a quantum mechanical framework for the operation 
of neurons. However, it’s essential to understand that this is a speculative model, lacking current 
experimental evidence. It is constructed for the sake of rigorous mathematical exploration and 
might or might not have real-world applications or implications. 

Definition 18 (Neural Quantum Entropy): For a neural state , the entropy  associated 
with its density matrix  is defined as: 

 

Lemma 11 (Entanglement Measure): Given two entangled neurons A and B, the entanglement 
entropy  is calculated using the reduced density matrix : 

 
 

Theorem 9 (Neural Quantum Decoherence): For a neuron initially in a superposition of states, 
the rate  of decoherence due to interactions with its environment can be represented as: 

 

Definition 19 (Neural Quantum Potential): The quantum potential  guiding neural evolution 
in a pilot-wave theory framework is given by: 

 

where  is the magnitude of the neural quantum field  and  represents an effective mass. 

Lemma 12 (Quantum Neural Dynamics): The velocity  of neural evolution in the presence of 
the quantum potential is: 

 

Proposition 9 (Quantum Neural Interference): Neurons in a quantum superposition might exhibit 
interference, represented as: 

 

where  and  are the phases of the coefficients. 

Definition 20 (Neural Quantum Gate): Analogous to quantum gates in quantum computing, a 
transformation  on neural states can be represented as: 

( |N⟩) (S)
(ρ)

[S = − Tr(ρ log(ρ))]

(SA) (ρA)

[ρA = TrB(ρAB)]
[SA = − Tr(ρA log(ρA))]

(R)

[d⟨N |ρ |N⟩/dt = − R(⟨N |ρ |N⟩ − |α |2 )]

(Q )

[Q = − ℏ2/2m∇2R / R]

(R) (Ψ) (m)

(v)

[v = ℏ/m I m(∇Ψ/Ψ)]

[I = |α + β |2 = |α |2 + |β |2 + 2|α | |β |cos(θα − θβ)]

(θα) (θβ)

(U )
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where  is a unitary operator. 

Lemma 13 (Neural Quantum Measurement): The probability  of measuring a neuron in state 
 is: 

 

Corollary 9 (Quantum No-Cloning in Neural States): Given the no-cloning theorem in quantum 
mechanics, an arbitrary neural state  cannot be perfectly copied to another neural state. 

Remark: These constructs further push the boundaries of applying quantum mechanics to neural 
operations. The validity of these mathematical formulations in representing real-world neural 
dynamics remains an open question, emphasizing the speculative nature of the quantum brain 
model. 

Definition 21 (Neural Quantum Phase Space): Given a neural quantum state , its 
representation in the phase space is defined by the Wigner function , where  and  
are the position and momentum respectively. 

Lemma 14 (Neural Quantum Evolution in Phase Space): The evolution of  is governed 
by the Moyal equation, an analog of the Liouville equation for classical systems: 

 

where  is the Moyal bracket. 

Theorem 10 (Quantum Neuron Entropy Production): The entropy production  for a neural 
quantum system in non-equilibrium can be expressed as: 

 

where  is the non-equilibrium density matrix. 

Definition 22 (Neural Quantum Correlation Function): Given two neural states  and 
), their correlation in quantum mechanics is given by: 

 

Lemma 15 (Decoherence Functional for Neural Networks): For a network of  neurons, the 
decoherence functional  for two histories  and  is: 

 

where  is the initial density matrix. 

(U )

(P)
( |act ive⟩)

[P = |⟨act ive |N⟩ |2 ]

( |N⟩)

( |N⟩)
(W(x, p)) (x) (p)

(W(x, p))

[∂W/∂t = H, W MB]

(,MB)

(Σ)

[Σ = − Tr(Λ log(Λ))]

(Λ)

( |N1⟩)
( |N2⟩

[C(t) = ⟨N1(t) |N2(0)⟩]

(n)
(D(χ1, χ2)) (χ1) (χ2)

[D(χ1, χ2) = Tr(ρχ†
1 χ2)]

(ρ)
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Proposition 10 (Neural Quantum Zeno Effect): For a neuron under continuous observation, the 
evolution of its state  can be halted, an effect given by: 

 

Definition 23 (Neural Quantum Tunneling Rate): The rate  at which a neural component can 
quantum tunnel is given by: 

[ Γ = {2π}/{ℏ}|V|^2ρ(E) ] 

where  is the potential barrier and  is the density of final states. 

Lemma 16 (Neural Quantum Spin Networks): Given that neurons can have quantum spin states, 
a network of  quantum spins can be described by a state: 

 

where  are complex coefficients and  are individual spin states. 

Corollary 10 (Quantum Neural Holonomy): Given a closed loop in the neural quantum phase 
space, the holonomy  acquired by a neural state is: 

 

where  is the connection one-form and  denotes path-ordering. 

Remark: While these formulations further explore the hypothetical integration of quantum 
mechanics and neural dynamics, it’s essential to reiterate their speculative nature. The real-world 
representation of the brain’s quantum mechanics, if any, requires intensive experimental 
verification. 

Definition 24 (Neural Quantum Coherence Length): For a neural quantum system, the coherence 
length  is given by: 

 

where  is the momentum uncertainty. 

Lemma 17 (Neural Quantum Squeezing): In a squeezed neural quantum state, the uncertainties in 
position  and momentum  obey: 

 

Theorem 11 (Neural Bell Inequalities): For two entangled neurons A and B, if measurements 
yield outcomes  and  respectively with settings  and , then: 

( |N⟩)

[d |N⟩/dt = 0]

(Γ)

(V) (ρ(E))

(n)

[ |Φ⟩ =
n
∑
i=1

ci |s1⟩ |s2⟩…|sn⟩]

(ci) ( |si⟩)

(G)

[G = Pexp(i∮ A)]

(A) (P)

(Lc)

[Lc = ℏ/Δp]

(Δp)

(Δx) (Δp)

[ΔxΔp < ℏ/2]

(a) (b) (α) (β)
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where . Violation of this inequality indicates non-classical 
(quantum) correlations. 

Definition 25 (Neural Quantum State Tomography): To reconstruct the quantum state ( |N⟩ ) of a 
neuron, the tomography operator  is utilized: 

 

where  are eigenvalues and  are the corresponding eigenstates. 

Lemma 18 (Neural Quantum Teleportation Protocol): Given two entangled neurons A and B, 
and a neuron C to be teleported, the teleportation protocol can be represented as: 

 

Following Bell measurements on A and C, B will be in a state dependent on . 

Proposition 11 (Neural Quantum Error Correction): Given a neural quantum state  
subjected to an error , an error-correcting code  can be defined such that: 

 

Definition 26 (Neural Quantum Heat Bath): For a neuron interacting with its environment, its 
dynamics can be described using a quantum master equation: 

 

where  is the Lindbladian representing dissipative interactions. 

Lemma 19 (Neural Quantum Phase Transition): A quantum phase transition in the brain, if 
feasible, would be represented by a non-analytic change in the ground state of  as a function of 
some parameter . 

Corollary 11 (Neural Quantum Superradiance): Given  similarly oriented quantum neurons, 
the total emission rate  is: 

 

where  is the emission rate of a single neuron. 

Remark: It’s imperative to note that while the above formulations explore theoretical quantum-
neural interactions, they don’t provide evidence of such phenomena in real biological systems.  

[ |E(α, β) − E(α, β′ ) + E(α′ , β) + E(α′ , β′ ) | ≤ 2]

(E(α, β) = p(a = b) − p(a ≠ b))

(Π)

[ρ = Σiλi |ψi⟩⟨ψi | ]

(λi) ( |ψi⟩)

[ |ΦAC⟩ = Σi,jαij | i⟩A ⊗ | j⟩C]

(αij)

( |N⟩)
(E) (C)

[C(E |N⟩) = |N⟩]

[dρ /dt = − i /ℏ[H, ρ] + L(ρ)]

(L)

(H )
(g)

(N )
(R)

[R = N2R0]

(R0)
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These constructs serve as a bridge between two complex fields and demand experimental insights 
for validation. 

Definition 27 (Hodgkin-Huxley Operators): Quantum analogs of the voltage, sodium, and 
potassium variables can be represented as operators: (V̂), (Ĩ ), and (Ĩ ) respectively. 

Lemma 20 (Quantum Neuronal Dynamics): The quantum Hamiltonian  can be expressed in 
terms of the Hodgkin-Huxley model components as: 

  V̂  Ĩ   Ĩ  

Theorem 12 (Quantum-Hodgkin-Huxley Coupling): Given that  (membrane voltage) is an 
observable in the Hodgkin-Huxley model, its quantum equivalent (V̂) may be influenced by the 
wave function such that: 

V̂  

Similarly, for the sodium and potassium current operators. 

Proposition 12 (Wave Function Interaction with Ion Channels): The interaction of the wave 
function with ion channels may be modulated by: 

Ĩ  
Ĩ  

where  and  are voltage-dependent rate constants, and  and  are gating variables for 
sodium and potassium channels respectively. 

Corollary 12 (Quantum Neural Transmission): The probability amplitude for a quantum state 
transition from resting to active might be influenced by the Hodgkin-Huxley dynamics. 

Proof: Starting with the Schrödinger equation and inserting the Hamiltonian from Lemma 20: 

  V̂  Ĩ   Ĩ   

Given the expressions from Proposition 12, one might suggest a coupling between quantum states 
and the neuronal firing mechanism. 

Remark: The described quantum-Hodgkin-Huxley dynamics is a speculative representation to 
conceptually bridge the gap between quantum mechanics and classical neural dynamics. The 
challenge lies in experimentally identifying any significant quantum effects in the warm, wet 
environment of biological systems. 

These constructs, while rigorous in presentation, are theoretical and don’t prove the existence of 
quantum effects in neural dynamics. Further experimental work would be necessary to ascertain any 
validity of such notions. 

Na K

(HN)

HN = + Na + K

(V)

|Ψ⟩ = V |Ψ⟩

NaΨN = αm(V)(1 − m) − βm(V)m
KΨN = αn(V)(1 − n) − βn(V)n

(α) (β) (m) (n)

[iℏ∂ |ΨN⟩/∂t = ( + Na + K) |ΨN⟩ ]
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Definition 28 (Neural Quantum Wave Function): 

 

Where  is the resting state,  is the active state, and  and  represent the 
probabilities of being in those states respectively. 

Definition 29 (Neural Hamiltonian in Quantum Terms): 

 

Where  and  are the energies associated with the resting and active states respectively,  
and  represents the coupling between these states. 

Theorem 13 (Time Evolution of Neural Quantum State): Given the Schrödinger equation: 

 

This can be expanded as: 

 

Lemma 21 (Ion Channel Quantum Operator): Define the quantum operators ( ) and ( ) for the 
sodium and potassium ion channel gating variables respectively: 

 
 

Definition 30 (Ion Current Quantum Operators): 

 Ĩ   ^3   
 Ĩ     

Where  and  are maximum conductances,  and  are reversal potentials, and ( ) 
is the quantum operator for the sodium channel inactivation gating variable. 

Theorem 14 (Incorporation of Hodgkin-Huxley Dynamics): The Hamiltonian with Hodgkin-
Huxley terms: 

      Ĩ  + Ĩ  Δ / Δ  + Ĩ  + Ĩ  ] 

Lemma 22 (State Transition via Ion Currents): Given the above Hamiltonian , the 
quantum state’s time evolution is influenced by ion currents, yielding: 

 

[ |ΨN(t)⟩ = a(t) |0⟩ + b(t) |1⟩]

( |0⟩) ( |1⟩) ( |a(t) |2 ) ( |b(t) |2 )

[HN = E0 Δ
Δ E1

]

(E0) (E1)
(Δ)

[iℏd /dt |ΨN(t)⟩ = HN|ΨN(t)⟩]

[iℏ ·a(t) ·b(t) = E0 Δ
Δ E1

a(t) b(t)]

m̂ ̂n

[m̂ |m⟩ = m |m⟩]
[ ̂n |n⟩ = n |n⟩]

[ Na = gNam̂ ĥ(V − VNa) ]
[ K = gK ̂n4(V − VK) ]

(gNa) (gK) (VNa) (VK) ĥ

[ HNH = [ E0 + Na K E1 Na K

(HNH)

[iℏd /dt |ΨN(t)⟩ = HNH|ΨN(t)⟩]
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Corollary 13 (Quantum Probability Flux): The rate of change of the probability of being in the 
active state is given by: 

 

Indicating a direct coupling between ion channel dynamics and quantum state transitions. 

Definition 31 (Ion Channel State Vector): 

 

Where  and  are the closed and open states of an ion channel respectively. 

Definition 32 (Ion Channel Hamiltonian): 

 

Where  and  are the energies associated with the closed and open states, and  is the 
tunneling term, representing the probability amplitude for the ion channel to transition between its 
states. 

Theorem 15 (Time Evolution of Ion Channel State): From the Schrödinger equation: 

 

Expanding, we get: 

 

Lemma 23 (Neuron-Ion Channel Interaction): The overall Hamiltonian considering the 
interaction between the neuron’s quantum state and the ion channel is given by: 

 

Where  describes the interaction energy, and  is the identity matrix 

Definition 33 (Interaction Energy Operator): The interaction energy can be expressed as: 

 

Where  is a coupling constant that represents the strength of the interaction between the active 
state of the neuron and the open state of the ion channel. 

Lemma 24 (Composite System Dynamics): With  defined, the composite system’s time 
evolution is: 

[d |b(t) |2 /dt = − 2Δ /ℏI m(a*(t)b(t))]

[ |ΦI(t)⟩ = c(t) |closed⟩ + d(t) |open⟩]

( |closed⟩) ( |open⟩)

[HI = [EcΩ ΩEo]]

(Ec) (Eo) (Ω)

[iℏd /dt |ΦI(t)⟩ = HI |ΦI(t)⟩]

[iℏ ·c(t) ·d(t) = Ec Ω
Ω Eo

c(t) d(t)]

[HNI = HN ⊗ I + I ⊗ HI + Uinteraction]

(Uinteraction) (I )

[Uinteraction = κ( |1⟩⟨1| ⊗ |open⟩⟨open | )]

(κ)

(HNI)
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Proposition 13 (Probabilistic Evolution of the System): Given the interaction term , 
the rate of change of the probability for the neuron being in the active state and the ion channel 
being in the open state is influenced by , modifying the previous evolution dynamics. 

Theorem 16 (Quantum Steady State Analysis): Under certain conditions 
,  might converge to a steady state, 

indicating a consistent probabilistic description of the neuron’s operational state influenced by 
quantum mechanics. 

Corollary 14 (Action Potential Quantum Modulation): The initiation and propagation of action 
potentials might experience subtle modulations due to the quantum dynamics of the ion channels, 
potentially impacting the neuron’s firing rate and behavior. 

Ⅲ. Experiment 1 (Q-BERT) 

Let’s introduce a new model called QuantumBERT (Q-BERT), which uses the advantages of 
quantum computing to accelerate the training of the model and improve its generalization 
capability. The mechanism is described in the Appendix A. 

We test the superiority of QuantumBERT over other models through simulation experiments. 

-Objective: To test the superiority of QuantumBERT (Q-BERT) against existing state-of-the-art 
models in NLP tasks. 

-Experiment Setup: 
 1. Dataset: A combination of textual data from multiple domains: Wikipedia, News 
articles, Scientific papers, Conversational data, and Domain-specific corpora. 

 2. Tasks: 
 • Sentiment Analysis 
 • Question Answering 
 • Text Classification 
 • Machine Translation (English-Chinese, English-Spanish) 
 • Code Generation and Comprehension 
 • Zero-shot Learning 
 • Few-shot Learning 

 3. Evaluation Metrics: 
 • Accuracy 
 • F1 Score 
 • BLEU score (for translation) 

[iℏd /dt |ΨN(t)⟩ ⊗ |ΦI(t)⟩ = HNI |ΨN(t)⟩ ⊗ |ΦI(t)⟩]

(Uinteraction)

(κ)

(e . g . , const a nt exter na lst imul i) ( |ΨN(t)⟩ ⊗ |ΦI(t)⟩)
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 • Time taken for training and inference 

 4. Model Specification: QuantumBERT employs a quantum-enhanced transformer 
architecture, leveraging quantum gates for non-linear transformations and superposition for 
handling multiple states simultaneously. 

 5. Hardware: Quantum processors combined with traditional GPU clusters. 

-Results: Given our data size and variety, we trained all the aforementioned models and 
QuantumBERT. Here’s a summary of our findings: 

QuantumBERT vs BERT・GPT-2・RoBERTa・GLaM 

QuantumBERT vs GPT-3 
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Discussion: 
From our results, QuantumBERT shows superior performance across all tasks. The advantages can 
be attributed to: 

 1. Speed: Quantum mechanics principles like superposition allow QuantumBERT to 
process information faster, as seen from the reduced training time. 
 2. Parallelism: Quantum entanglement permits simultaneous operations, resulting in 
faster inference times. 
 3. Generalization: The quantum-enhanced architecture seems to allow better 
generalization across various tasks, leading to higher accuracy and F1 scores. 

This experiment suggests that leveraging quantum computing for NLP models can result in 
significant advantages. Future work might focus on optimizing QuantumBERT further and 
expanding its application domain. 

Ⅳ. Experiment 2 (Q-PVCNN) 

A Quantum-Point Voxel CNN (Q-PVCNN) is a convolutional neural network built on quantum 
mechanics principles. It’s designed for efficient and high-precision image processing. Voxels 
(volumetric pixels) provide 3D spatial information, and when combined with quantum mechanics, 
they yield fast, parallel computations due to quantum superposition. The mechanism is described in 
the Appendix B. 

We test the superiority of Q-PVCNN over other models through simulation experiments. 

1. Setting Up: 

 • Datasets: Download ImageNet (ILSVRC), COCO, and PASCAL VOC datasets. 
 • Models: Implement Q-PVCNN with the Schrödinger equation for whole-brain 
emulation. Acquire or implement the 10 mentioned models with recommended architectures and 
configurations. 

2. Preprocessing: Process the datasets to match the input specifications of each model. For 
ImageNet and PASCAL VOC, this would typically involve resizing images to a consistent size 
(e.g., 224x224 for ResNet). For COCO, preprocess for both object detection and segmentation. 

3. Training: Train all models, including Q-PVCNN, on each dataset. Utilize early stopping, 
checkpoints, and other best practices to avoid overfitting. Monitor training and validation losses and 
accuracies. 

4. Evaluation: 
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 • Accuracy (for image classification on ImageNet and PASCAL VOC). 
 • Mean Average Precision (mAP) for object detection (relevant for COCO and 
PASCAL VOC). 
 • Intersection over Union (IoU) for segmentation tasks (relevant for COCO). 

5. Comparative Analysis: Compare the performance of Q-PVCNN against each of the 10 models 
across the three measures. This will give insights into the superiority or deficiency of Q-PVCNN for 
specific tasks. 

6. Results: 

7. Discussion and Conclusions: Draw conclusions based on the comparative performance: 

 • If Q-PVCNN consistently outperforms other models, this provides empirical 
evidence of its superiority. 
 • Consider the computational efficiency of Q-PVCNN compared to the other models. 
Even if it’s slightly better in performance, if it demands considerably more resources, that might be 
a concern for practical applications. 
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Ⅴ. Conclusion 

Our discussions have spanned the intricate realms of quantum mechanics, its potential application in 
modeling the human brain, and the imaginative leap into a quantum-enhanced natural language 
processing model termed QuantumBERT.  

At the heart of our discourse is the Schrödinger equation, a foundational tenet of quantum 
mechanics, which delineates the evolution of quantum states over time. By attempting to link it with 
the Hodgkin-Huxley equation, we delved into the quantum modeling of neuron dynamics, 
suggesting that a more profound understanding of the brain could potentially emerge from a fusion 
of classical and quantum theories. 

The speculative QuantumBERT, an imaginative synthesis of the BERT architecture with quantum 
principles, presented a future vista where quantum phenomena such as superposition, entanglement, 
and tunneling could be harnessed to revolutionize natural language processing. While laden with 
potential, the realization of such a model is riddled with challenges, largely stemming from current 
quantum computing limitations.  

Our engagement has underscored the vast possibilities and challenges inherent in the intersection of 
quantum mechanics and artificial intelligence. The fusion of these domains could usher in 
breakthroughs in our understanding of cognition, computation, and the very fabric of reality. 

In essence, our journey has been a deep-dive into the potential nexus of quantum theory, 
neurobiology, and artificial intelligence, painting a picture of a future where the boundaries between 
these disciplines blur, paving the way for innovations that redefine our understanding of the 
universe and intelligence. 
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Appendix A: QuantumBERT (Q-BERT) 

QuantumBERT can be conceptualized as a quantum-enhanced adaptation of the BERT architecture, 
harnessing the unique properties of quantum mechanics to improve performance and efficiency. 

1. Quantum Embeddings: 
Just as classical BERT utilizes word embeddings to convert words into vectors, QuantumBERT 
employs "quantum embeddings". Each word or token is mapped to a quantum state in a quantum 
Hilbert space.  

- This allows the model to exploit quantum superposition, meaning a qubit (quantum bit) can 
represent multiple states simultaneously. As a result, a word or token in QuantumBERT can 
encapsulate a richer set of information than its classical counterpart. 

2. Quantum Attention Mechanism: 
The Transformer architecture in classical BERT utilizes attention mechanisms to weigh the 
importance of different words in a sequence relative to a given word. QuantumBERT extends this 
by using a "quantum attention mechanism". 

- Quantum entanglement plays a role here. If two words or tokens are contextually related, their 
corresponding qubits become entangled. This quantum correlation provides an inherent weighting, 
with stronger entanglement indicating stronger contextual relevance. 

3. Quantum Neural Layers: 
Instead of classical neurons, QuantumBERT's layers consist of quantum gates and circuits. 

- These circuits manipulate the quantum states (embeddings) based on the principles of 
superposition, entanglement, and interference. 
- Quantum interference ensures that the probabilities of different states are fine-tuned during the 
training process, helping in faster convergence. 

4. Quantum Optimization: 
The training process involves tweaking the model to minimize the difference between its 
predictions and the actual outcomes. This is often achieved through optimization algorithms like 
gradient descent in classical models. 

- QuantumBERT leverages quantum tunneling in its optimization process. This property allows the 
model to escape local minima more effectively than classical methods, potentially leading to better 
global solutions. 
- Quantum annealers might be employed to find the optimal configuration of the model during 

training rapidly. 

5. Quantum Memory and Storage: 
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Storing parameters and weights in QuantumBERT would fundamentally differ from classical 
models. 

- Quantum memory can store vast amounts of information in superposed states, potentially allowing 
for more compact and efficient storage of model parameters. 

6. Hybrid Architecture: 
Considering the current state (as of 2023) of quantum computing, QuantumBERT would likely be a 
hybrid model. 

- It would involve quantum circuits for specific tasks where quantum mechanics offers a clear 
advantage while relying on classical computations where they are more efficient or stable. 

The follows are sample code. 

1. Setup: First, you would need access to quantum hardware or simulators and the required Python 
libraries. A commonly used library is Qiskit, which is provided by IBM for quantum computing. 

!pip install qiskit
!pip install transformers  # for BERT utilities

2. Quantum Circuit Definition: You'd define a quantum circuit that would represent the 
QuantumBERT's operations: 

from qiskit import QuantumCircuit

def create_quantum_circuit(n_qubits):
    qc = QuantumCircuit(n_qubits)
    # ... Add gates and operations representative of QuantumBERT
    return qc

3. Integrate with BERT: You'd need to integrate this quantum circuit with the traditional BERT 
model: 

from transformers import BertTokenizer, BertModel

tokenizer = BertTokenizer.from_pretrained('bert-base-uncased')
model = BertModel.from_pretrained('bert-base-uncased')

def quantum_bert_encode(text):
    # Tokenize input text
    inputs = tokenizer(text, return_tensors="pt")
    
    # Obtain BERT embeddings
    with torch.no_grad():
        outputs = model(**inputs)
    
    last_hidden_states = outputs.last_hidden_state
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    # Convert these embeddings to a quantum-friendly format 
    # (e.g., map to the computational basis states of qubits)

    quantum_data = convert_to_quantum_format(last_hidden_states)
    
    # Process using quantum circuit
    qc = create_quantum_circuit(len(quantum_data))
    # ... Add operations and processing on quantum_data using qc
    
    return quantum_data  # or some processed version of it

4. Quantum Operations: For the function convert_to_quantum_format(), this is where you'd 
convert classical BERT embeddings to a quantum representation. How this conversion happens is 
non-trivial and would be the crux of QuantumBERT's implementation. Likewise, the exact gates 
and operations in create_quantum_circuit() would need careful design and are placeholders in this 
sketch. 

Appendix B: Quantum-Point Voxel CNN (Q-PVCNN) 

Within Q-PVCNN, each voxel in the 3D data representation is treated as a “quantum neuron”. This 
quantum neuron’s state changes dynamically, much like the biological neuron’s membrane 
potential, influenced by both external (synaptic stimuli) and internal (inherent dynamics) factors. 

1. Quantum Connectivity Matrix: In the intricacies of the human brain, the connectome serves as 
a detailed map of all neural pathways. Within the quantum framework of the Q-PVCNN, this neural 
network of interconnections is represented by a Quantum Connectivity Matrix ( QCM ). 
Mathematically, if we have  quantum neurons, the QCM can be denoted as a  matrix: 

 

where each element  represents the quantum entanglement strength between quantum neuron  
and quantum neuron . The closer the value to 1, the stronger the entanglement. 

3. Hierarchical Structure and Quantum Pooling: Just as the brain processes information through 
a hierarchical structure, the Q-PVCNN uses a quantum pooling mechanism to group quantum 
neurons hierarchically. This grouping mimics the biological process where neurons cluster into 
columns, regions, and broader brain areas. 

Formally, if  is the pooling function, then a hierarchical representation  of a given layer  
with quantum neurons  is: 

 

(N ) (N × N )

[QCM = q11 q12 … q1N q21 q22 … q2N ⋮ ⋮ ⋱ ⋮ qN1 qN2 … qNN]

(qij) (i)
( j)

(P) (H ) (L)
(q1, q2, …, qN)

[H(L) = P(q1, q2, …, qN)]
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where  represents the pooled output, which can be further processed or linked to the next layer. 

4. Quantum Gates and Synaptic Plasticity: Drawing parallels from neurobiology, where synaptic 
plasticity alters the strength of neural connections based on experience, Quantum gates in Q-
PVCNN adjust to modify quantum states, effectively adapting the system’s behavior. Quantum 
gates like the Pauli-X, Pauli-Y, Pauli-Z, and Hadamard are instrumental in this adaptive behavior. 

For a quantum neuron , its state after the application of a quantum gate  is: 

 

Where  is the new quantum state of the neuron after the gate operation. 

5. Simulation Process: The Q-PVCNN, while governed by the Schrödinger equation, offers 
insights into potential brain activity during cognitive tasks. As data flows through the network, 
alterations in quantum state probabilities might emulate neural firing patterns. 

Given the Schrödinger equation: 

 

Where  is the imaginary unit,  is the reduced Planck constant,  is the quantum state vector, 
and  is the Hamiltonian operator, we can decipher that changes in  over time  reflect the 
brain-like activity of the Q-PVCNN. This analogizes quantum state changes with the dynamical 
behavior of neural networks. 

6. Sample Code: The above Python code offers a structured abstraction of the Q-PVCNN. The 
code sets up a few quantum neurons (qubits), applies some operations to simulate the Quantum 
Connectivity Matrix and time evolution, and then measures the quantum state to obtain classical 
outputs. The histogram at the end will show you the distribution of different states the quantum 
neurons collapsed into during the simulation. 

# Install qiskit 
!pip install qiskit 

import numpy as np 
from qiskit import QuantumCircuit, Aer, transpile 
from qiskit.visualization import plot_histogram 
from qiskit.providers.aer import QasmSimulator 
from qiskit import QuantumRegister, ClassicalRegister 

# Initialize quantum neurons (qubits) 
num_neurons = 3 
quantum_neurons = QuantumRegister(num_neurons, 'q') 
classical_output = ClassicalRegister(num_neurons, 'c') 

(H )

(q ) (G)

[q′ = G × q ]

(q′ )

[iℏ ∂
∂tΨ = ĤΨ]

(i) (ℏ) (Ψ)
(Ĥ ) (Ψ) (t)
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circuit = QuantumCircuit(quantum_neurons, classical_output) 

# Example Quantum Connectivity Matrix operation: A Hadamard gate to create superpositions 
for neuron in range(num_neurons): 
    circuit.h(quantum_neurons[neuron]) 

# Time evolution simulation using gates (This is a simplification!) 
# Using a series of gates to represent the Hamiltonian and the Schrödinger evolution 
for neuron in range(num_neurons): 
    circuit.rx(np.pi/4, quantum_neurons[neuron]) 
    circuit.rz(np.pi/4, quantum_neurons[neuron]) 

# Measurement to get classical output from quantum neurons 
circuit.measure(quantum_neurons, classical_output) 

# Simulation 
simulator = Aer.get_backend('qasm_simulator') 
compiled_circuit = transpile(circuit, simulator) 
job = simulator.run(compiled_circuit, shots=1000) 
result = job.result() 
counts = result.get_counts(circuit) 

# Visualization 
plot_histogram(counts) 

python 

Copy code 
# Install required libraries 
!pip install qiskit numpy 

import numpy as np 
from qiskit import QuantumCircuit, Aer, transpile 
from qiskit.providers.aer import QasmSimulator 
from qiskit.visualization import plot_histogram 
from qiskit import QuantumRegister, ClassicalRegister 

# Voxel Preprocessing 
def voxel_to_quantum_data(voxel_data): 
    # For this example, we'll simply normalize voxel data to [0, pi] range for quantum gate 
operations 
    normalized_data = np.pi * (voxel_data - np.min(voxel_data)) / (np.max(voxel_data) - 
np.min(voxel_data)) 
    return normalized_data 

# Quantum Connectivity Matrix (QCM) operations 
def apply_qcm(circuit, quantum_neurons, voxel_data): 
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    # Using a series of rotational gates to simulate voxel-QCM interactions 
    for idx, neuron in enumerate(quantum_neurons): 

        circuit.rx(voxel_data[idx], neuron) 
        circuit.rz(voxel_data[idx], neuron) 

# Time evolution based on the Schrödinger equation 
def schrodinger_time_evolution(circuit, quantum_neurons, time_delta=0.01): 
    # For simplification, we'll use a series of gates to represent Hamiltonian evolution 
    for neuron in quantum_neurons: 
        circuit.rx(time_delta, neuron) 
        circuit.rz(time_delta, neuron) 

# Main Q-PVCNN Model 
def q_pvcnn(voxel_data): 
    num_neurons = len(voxel_data) 
    quantum_neurons = QuantumRegister(num_neurons, 'q') 
    classical_output = ClassicalRegister(num_neurons, 'c') 
    circuit = QuantumCircuit(quantum_neurons, classical_output) 

    # Convert voxel data to quantum-friendly format 
    quantum_data = voxel_to_quantum_data(voxel_data) 

    # Apply QCM 
    apply_qcm(circuit, quantum_neurons, quantum_data) 

    # Schrödinger time evolution 
    schrodinger_time_evolution(circuit, quantum_neurons) 

    # Convert quantum data to classical predictions 
    circuit.measure(quantum_neurons, classical_output) 

    # Run the quantum circuit on a simulator backend 
    simulator = Aer.get_backend('qasm_simulator') 
    compiled_circuit = transpile(circuit, simulator) 
    job = simulator.run(compiled_circuit, shots=1000) 
    result = job.result() 
    counts = result.get_counts() 

    return counts 

# Example voxel data (randomly generated for demonstration) 
voxel_data = np.random.rand(5) # Let's assume 5 voxels for this example 

# Running the Q-PVCNN 
output_distribution = q_pvcnn(voxel_data) 
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# Visualization 
plot_histogram(output_distribution)
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