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Abstract 

We propose an innovative exploration of the intricate relationships between Number Theory, 
Geometry, and Analytic Number Theory within the context of Category Theory, a powerful 

language that mathematically formalizes abstract structures and their relationships. Leveraging 
Category Theory’s capacity to systematically depict objects (mathematical structures) and 

morphisms (maps between structures), we will rigorously formulate the relationships between these 
three fields of study, focusing on concepts such as Kan Extensions, Limit and Colimit formulae, 

preserving extensions, pointwise Kan extensions, density, and formal category theory. 
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Ⅰ. Introduction 

As one traverses the broad landscape of mathematics, the intersectional dialogue between various 
mathematical domains becomes evident, none more so than the nexus of Number Theory, 
Geometry, and Analytic Number Theory. To decipher and formalize these interconnected 
relationships, Category Theory serves as an advantageous linguistic tool, offering a framework 
where objects and morphisms coalesce into comprehensive categories. These categories, in turn, 
capture and reflect the structure and dynamics of mathematical domains, promoting a deeper 
understanding of their inherent properties and mutual relationships. 

We commence our exploration by defining our categories. For Number Theory, we propose the 
category NT whose objects are the rings of integers and whose morphisms are the ring 
homomorphisms. Similarly, for Geometry, we define the category GM, where objects are geometric 
spaces (for example, manifolds or algebraic varieties) and morphisms are the continuous (or 
differentiable or holomorphic) functions. For Analytic Number Theory, we introduce the category 
AN, with analytic functions as objects and functionals as morphisms. 

Kan Extensions and Their Application to Number Theory and Geometry 
Kan extensions serve as an invaluable tool in Category Theory, embodying a generalization of the 
notion of extending a function. In the categorical landscape, Kan extensions offer a mechanism to 
extend morphisms in one category to another category, thereby establishing relationships between 
categories.[10] More formally, a Kan extension of a functor F: C -> D along another functor U: C 
-> E is a functor L: E -> D along with a natural transformation ε: L U -> F such that for every 
functor M: E -> D and every natural transformation η: M U -> F, there exists a unique natural 
transformation θ: M -> L such that η = ε U (id U) θ. This connects our categories in a meaningful 
way, allowing for the transfer of properties between number theory and geometry via Kan 
extensions.□ 

Limit and Colimit Formulae and Their Role in Connecting Number Theory and Analytic 
Number Theory 
The categorical notions of limits and colimits provide an encompassing formalization of universal 
properties, with limits capturing the ‘infimum’ and colimits the ‘supremum’ of a diagram in a 
category.[10] Specifically, for our purposes, we can conceptualize these as tools that allow us to 
establish correspondences between the rings of integers (objects in NT) and the analytic functions 
(objects in AN).□ 

Preserving Extensions and Pointwise Kan Extensions 
Preserving extensions, in the context of category theory, involves the preservation of limits or 
colimits under the action of a functor. The richness of this concept becomes apparent when 
investigating the pointwise Kan extensions, offering us a way to make connections between 
categories.[10]□ 
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Density and Formal Category Theory 
Density, in this framework, describes the property of a functor, where for each object in the target 
category, there is a way to reconstruct it from the objects of the source category.[10] Employing this 
within Formal Category Theory, we find an elegant machinery for interweaving Number Theory, 
Geometry, and Analytic Number Theory.□ 

This work merely scratches the surface of this profound categorical landscape. The 
interrelationships between these mathematical domains are a vast sea, ripe for further exploration. 
We hope that this framework serves as a sturdy vessel for future mathematicians to navigate these 
waters and uncover the hidden treasures within this intricate mathematical nexus. 
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Ⅱ. Bridging Number Theory, Geometry, and Analytic Number 
Theory by Category Theory 

We begin by summarizing the main concepts of category theory and discussing their connection to 
number theory, number geometry, and analytic number theory, giving specific examples. 

Let's start with the formal definitions of some of the main concepts: 

Definition 1 (Category): A category 𝒞 is a tuple (Ob(𝒞), Hom(𝒞), ∘, id), where  

1. Ob(𝒞) is a class of objects, 
2. Hom(𝒞) is a class of morphisms,  
3. ∘ is a binary operation (composition of morphisms), and  
4. id is a unary operation (identity morphism),  

which satisfy the following axioms: 

a) (Associativity) If f: A → B, g: B → C, and h: C → D are morphisms in 𝒞, then h ∘ (g ∘ f) = (h ∘ g) 
∘ f. 
b) (Identity) For every object X in 𝒞, id_X ∘ f = f = f ∘ id_Y, for any morphism f: X → Y in 𝒞. 

Definition 2 (Functor): A functor F from a category 𝒞 to a category 𝒟, denoted F: 𝒞 → 𝒟, 
consists of two functions: 

1. Ob(𝒞) → Ob(𝒟), denoted by X → F(X),  
2. Hom(𝒞) → Hom(𝒟), denoted by f → F(f), 

such that the following properties hold: 

a) (Preservation of Composition) For any two morphisms f: X → Y and g: Y → Z in 𝒞, F(g ∘ f) = 
F(g) ∘ F(f). 
b) (Preservation of Identity) For any object X in 𝒞, F(id_X) = id_F(X). 

Definition 3 (Natural Transformation): Given two functors F, G: 𝒞 → 𝒟, a natural transformation 
η: F → G is a family of morphisms in 𝒟, indexed by the objects of 𝒞, such that for each object X in 
𝒞, η_X: F(X) → G(X) is a morphism in 𝒟, and for each morphism f: X → Y in 𝒞, the following 
square commutes: 
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F(X) --η_X--> G(X) 
 |              | 
F(f)            G(f) 
 |              | 
v              v 
F(Y) --η_Y--> G(Y) 

Theorem 1 (Yoneda's Lemma): For a locally small category 𝒞, a fixed object X in 𝒞, and a functor 
F: 𝒞^op → Set, there is a natural isomorphism between the set of natural transformations from 
Hom(−,X) to F and F(X), denoted as Nat(Hom(−,X), F) ≅ F(X).  

Definition 4 (Kan Extensions): Let 𝒞, 𝒟, and 𝐸 be categories, and let U: 𝒞 → 𝐸 and F: 𝒞 → 𝒟 be 
functors. A right Kan extension of F along U consists of a functor Ran_U F: 𝐸 → 𝒟 and a natural 
transformation η: Ran_U F U ⇒ F that is universal with respect to this property. Formally, for any 

functor G: 𝐸 → 𝒟 and any natural transformation γ: G U ⇒ F, there exists a unique natural 

transformation ω: G ⇒ Ran_U F such that γ = ω U η. Similarly, a left Kan extension Lan_U F of F 

along U consists of a functor Lan_U F: 𝐸 → 𝒟 and a natural transformation η: F ⇒ Lan_U F U that 

is universal with respect to this property. 

Lemma 1 (Existence of Kan Extensions): Under appropriate size conditions, Kan extensions 
always exist: for any small category 𝒞, locally small category 𝒟, and functor F: 𝒞 → 𝒟, if 𝐸 is 
cocomplete, then Ran_U F exists for every functor U: 𝒞 → 𝐸; if 𝐸 is complete, then Lan_U F exists 
for every functor U: 𝒞 → 𝐸. 

Definition 5 (Limits and Colimits): Limits and colimits are universal constructions that generalize 
the notion of products, coproducts, equalizers, coequalizers, pullbacks, pushouts, and other 
constructions. A limit of a functor F: 𝐼 → 𝒞 is a universal cone to F, i.e., an object L in 𝒞 together 
with a natural transformation δ: ΔL ⇒ F such that for any other object N in 𝒞 and a natural 

transformation γ: ΔN ⇒ F, there exists a unique morphism u: N → L such that δ ∘ Δu = γ. A colimit 

of a functor F: 𝐼 → 𝒞 is a universal cocone from F, i.e., an object L in 𝒞 together with a natural 
transformation δ: F ⇒ ΔL such that for any other object N in 𝒞 and a natural transformation γ: F ⇒ 

ΔN, there exists a unique morphism u: L → N such that Δu ∘ δ = γ. 

Theorem 2 (Adjoint Functor Theorem): Adjoint Functor Theorems provide sufficient and 
necessary conditions for a functor to have a left or right adjoint. For example, the General Adjoint 
Functor Theorem (GAFT) states that a functor U: 𝒞 → 𝒟 has a left adjoint if and only if U is 
continuous and 𝒞 is locally small and complete. 
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Definition 6 (Preserving Limits and Colimits): A functor F: 𝒞 → 𝒟 is said to preserve limits 
(respectively, colimits) if for every diagram D: 𝐼 → 𝒞 in 𝒞, the natural morphism: 

F(lim D) → lim F ∘ D (respectively, F(colim D) → colim F ∘ D) 

is an isomorphism in 𝒟. 

Definition 7 (Density): Let 𝒞 and 𝒟 be categories, and J: 𝒞 → 𝒟 a functor. J is said to be dense if 
for every object X in 𝒟, the comma category (J ↓ X) is nonempty and connected. 

Theorem 3 (Freyd’s Adjoint Functor Theorem): This theorem provides conditions under which a 
functor F: 𝒞 → 𝒟 has a right adjoint. Specifically, if 𝒞 is a complete, locally small category and F 
preserves limits and is a dense functor, then F has a right adjoint. 

Lemma 2 (Existence of Pointwise Kan Extensions): If 𝐸 is a complete category, then for any 
categories 𝒞, 𝒟, and any functors F: 𝒞 → 𝒟, U: 𝒞 → 𝐸, the functor Ran_U F exists pointwise. That 
is, for any object e in 𝐸, the limit of the comma category (U ↓ e) exists in 𝒟. 

Corollary 1: Under the conditions of Lemma 2, if F is fully faithful and essentially surjective, then 
Ran_U F is fully faithful and essentially surjective. 

Definition 8 (Monoidal Category): A monoidal category is a category 𝒞 equipped with a bifunctor 
⊗: 𝒞 × 𝒞 → 𝒞, an object I (called the unit object), and three natural isomorphisms (associator, left 
unitor, and right unitor) satisfying the pentagon and triangle axioms. 

Definition 9 (Enriched Category): Given a monoidal category V, a V-category 𝒞 is a category 
whose hom-objects are in V and composition is a morphism in V. Specifically, for objects X, Y, Z in 
𝒞, the composition is a morphism 𝒞(Y, Z) ⊗ 𝒞(X, Y) → 𝒞(X, Z) in V. 

Proposition 1 (Yoneda Proposition): If 𝒞 is a locally small category and F: 𝒞 → Set is a 
representable presheaf, then F is a coproduct of representables. 

Lemma 3 (Existence of Enriched Limits): If V is a complete monoidal category, then for any 
small V-category 𝒞 and any V-functor F: 𝒞 → V, the limit of F exists in V. 

Corollary 2: Under the conditions of Lemma 3, if F: 𝒞 → V is a V-functor preserving (small) limits 
and V has (small) colimits, then the (small) limit of F exists in V. 

Remark 1: We can notice that enriched category theory plays a critical role in linking the fields of 
Number Theory, Geometry, and Analytic Number Theory. Monoidal and enriched categories allow 
us to generalize many concepts from traditional (Set-enriched) category theory to a more abstract 
setting, which is crucial for exploring the relationships between these different areas of 
mathematics. 
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Let us denote by 𝒞, 𝒟 and 𝑬 the categories associated with number theory, geometry, and analytic 
number theory, respectively. Each category has its own set of objects Ob and morphisms Mor. For  

example, for 𝒞, Ob(𝒞) could represent number fields and Mor(𝒞) could represent ring 
homomorphisms preserving these number fields. 

A functor F: 𝒞 → 𝒟 encapsulates a structural transformation from one category to another. 
Formally, this means: 

 1. Object Functionality: For every object c in Ob(𝒞), there is an object F(c) in Ob(𝒟). 
 2. Morphism Functionality: For every morphism f: c → c’ in Mor(𝒞), there is a 
morphism F(f): F(c) → F(c’) in Mor(𝒟). 
 3. Identity Preservation: For each object c in Ob(𝒞), F maps the identity morphism 
id_c: c → c in Mor(𝒞) to the identity morphism id_F(c): F(c) → F(c) in Mor(𝒟). 
 4. Composition Preservation: For all objects c, c’, c’’ in Ob(𝒞) and all morphisms f: c 
→ c’ and g: c’ → c’’ in Mor(𝒞), F maps the composition of morphisms g ∘ f: c → c’’ to the 
composition F(g) ∘ F(f): F(c) → F(c’’) in Mor(𝒟). 

This functor F captures and preserves the structure of the number theory within the context of 𝒟 
(the category associated with geometric structures) and likewise for the functor G: 𝒟 → 𝑬, which 
captures and preserves the geometric structures within the context of 𝑬 (the category associated 
with analytic number theory). 

To deepen this formalization, a set of specific examples of these objects and morphisms within each 
category would be needed. Also, a detailed exploration of the properties of the functors F and G and 
how they specifically encapsulate and preserve the structures of these fields within one another is a 
task of substantial complexity. The actual construction and analysis of these functors involve 
intricate and highly specialized mathematical knowledge. 

Definition 10 (Adjunction): Let 𝒞, 𝒟 be categories, F: 𝒞 → 𝒟 and G: 𝒟 → 𝒞 functors. An 
adjunction between F and G is a family of bijections 

hom_𝒟(F(C), D) ≅ hom_𝒞(C, G(D)) 

natural in C in 𝒞 and D in 𝒟. When such an adjunction exists, F is said to be a left adjoint of G, and 
G a right adjoint of F. 

Theorem 4 (Adjunction Hom-Set Theorem): If F: 𝒞 → 𝒟 and G: 𝒟 → 𝒞 are functors such that F 
is left adjoint to G, then there exist natural isomorphisms 

hom_𝒟(F(C), D) ≅ hom_𝒞(C, G(D)) 
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for all objects C in 𝒞 and D in 𝒟. 

Lemma 4 (Unit-Counit Definition of Adjunction): If F: 𝒞 → 𝒟 is left adjoint to G: 𝒟 → 𝒞 with 
unit η: 1_𝒞 ⇒ G ∘ F and counit ε: F ∘ G ⇒ 1_𝒟, then the following triangles commute: 

F(C) ---F(η_C)--> FGF(C) ---ε_F(C)--> F(C) 

G(D) <---η_G(D)-- GFG(D) <---G(ε_D)--- G(D) 

Corollary 3: If F: 𝒞 → 𝒟 is left adjoint to G: 𝒟 → 𝒞, then F preserves colimits and G preserves 
limits. 

Remark 2: Adjunctions play a central role in category theory, providing a powerful way to link 
different categories. In the context of linking Number Theory, Geometry, and Analytic Number 
Theory through Category Theory, adjunctions provide a systematic way to move between categories 
related to each field. By using adjunctions, we can understand how mathematical structures 
transform under different categorical contexts. 

The concept of an adjunction between categories could be written formally as follows: 

An adjunction between categories 𝒞 and 𝒟 is a pair of functors (F, G) with F: 𝒞 → 𝒟 and G: 𝒟 → 
𝒞, together with a pair of natural transformations (also called unit and counit of the adjunction): 

η: Id_𝒞 → G∘F (unit) 
ε: F∘G → Id_𝒟 (counit) 

which satisfy the triangle identities: 

 1. F(η_c) ∘ ε_(F(c)) = 1_(F(c)) for all c in Ob(𝒞) 
 2. ε_(G(d)) ∘ G(η_d) = 1_(G(d)) for all d in Ob(𝒟) 

These identities essentially encapsulate the idea that F and G “translate” structures in a compatible 
way between categories. This compatibility can be interpreted as the translation from one category 
to the other and back again being “as close as possible” to being the identity. 

To state this more formally, let’s begin by defining what we mean by functors and natural 
transformations. 

 1. Functors: A functor F from a category 𝒞 to a category 𝒟, denoted F: 𝒞 → 𝒟, is a 
map that associates each object c of 𝒞 to an object F(c) of 𝒟, and each morphism f: c → c’ in 𝒞 to a 
morphism F(f): F(c) → F(c’) in 𝒟, such that the following hold: 
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(a) F preserves identities: For every object c of 𝒞, F(id_c) = id_(F(c)). 
(b) F preserves composition: For all morphisms f: c → c’ and g: c’ → c’’ in 𝒞, F(g ∘ f) = F(g) ∘ F(f). 

 2. Natural Transformations: Given two functors F, G: 𝒞 → 𝒟, a natural transformation 
η: F → G is a family of morphisms in 𝒟, η = {η_c: F(c) → G(c)} for all objects c in 𝒞, such that for 
every morphism f: c → c’ in 𝒞, the following diagram commutes: 

F(c) —η_c→ G(c) 
|                 | 
F(f)|                 |G(f) 
↓                 ↓ 
F(c’)—η_c’→ G(c’) 

Now, an adjunction between categories 𝒞 and 𝒟 is a pair of functors (F, G) with F: 𝒞 → 𝒟 and G: 
𝒟 → 𝒞, together with a pair of natural transformations (the unit and the counit of the adjunction): 

η: Id_𝒞 → G∘F (unit) 
ε: F∘G → Id_𝒟 (counit) 

satisfying the triangle identities: 

1. F(η_c) ∘ ε_(F(c)) = 1_(F(c)) for all c in Ob(𝒞) 
2. ε_(G(d)) ∘ G(η_d) = 1_(G(d)) for all d in Ob(𝒟) 

Here, 1_(F(c)) and 1_(G(d)) are the identity morphisms of the objects F(c) and G(d) respectively. 

The triangle identities express the idea that “doing nothing” to an object (applying the identity) is 
“the same” as moving it to the other category and then bringing it back. This provides a way to 
“translate” structures between categories in a way that preserves their fundamental properties. In the 
context of unifying different mathematical fields, this allows us to map concepts from one field to 
another and back in a way that maintains their structural relationships. 

Definition 11 (Representable Functor): Given a category 𝒞 and an object C in 𝒞, the 
representable functor hom_𝒞(C, -): 𝒞 → Set is defined for an object X in 𝒞 and a morphism f: X → 
Y in 𝒞 as hom_𝒞(C, X) = hom_𝒞(C, X) and hom_𝒞(C, f) = hom_𝒞(C, f). 

Proposition 2 (Yoneda Lemma): The Yoneda embedding is a full and faithful functor Y: 𝒞 → 
[𝒞^op, Set] defined by Y(C) = hom_𝒞(C, -). The Yoneda Lemma asserts that for any functor F: 
𝒞^op → Set, there exists a natural isomorphism Φ: hom([𝒞^op, Set], Y, F) ≅ F(C). 
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Proof: This is a well-known result in category theory, but it essentially boils down to using the 
properties of natural transformations and functoriality to show that Φ is indeed a natural 
isomorphism. 

Corollary 4: Every functor F: 𝒞 → 𝒟 induces two functors F_: [𝒞, Set] → [𝒟, Set] and F^: [𝒟^op, 
Set] → [𝒞^op, Set], and these functors preserve all limits and colimits. 

The representable functors and Yoneda Lemma form the backbone of representable theory, a 
powerful tool in category theory that has extensive applications in other areas of mathematics, 
including number theory, geometry, and analytic number theory. 

As an example, the concept of a scheme in algebraic geometry can be understood as a locally ringed 
space, which is a topological space together with a sheaf of rings. The concept of a scheme is 
essential in modern algebraic geometry and number theory. Sheaves can be viewed as functors, and 
schemes can be characterized categorically, which connects geometry, number theory, and category 
theory. 

The Yoneda Lemma, on the other hand, provides a way to understand objects in a category by 
looking at their morphisms. In the context of number theory, the objects could be numbers or 
number systems, and the morphisms could be number-theoretic functions. Similarly, in the context 
of geometry, the objects could be geometric figures or spaces, and the morphisms could be 
geometric transformations. In analytic number theory, one might consider complex-valued functions 
as objects, and function transformations as morphisms. 

Definition 12 (Enriched Category): A category 𝒞 is said to be enriched over a base category 𝒱 if 
for any two objects A and B in 𝒞, the hom set hom(A, B) is an object in 𝒱. We will denote the 
category of sets by Set, the category of topological spaces by Top, and the category of Banach 
spaces by Ban. 

Theorem 5 (Enriched Functors Preserve Structures): Given two categories 𝒞 and 𝒟 enriched 
over the same base category 𝒱, a functor F: 𝒞 → 𝒟 is said to be enriched if for any two objects A 
and B in 𝒞, there is a morphism F_AB: hom_𝒞(A, B) → hom_𝒟(F(A), F(B)) in 𝒱 that respects the 
composition in 𝒞 and 𝒟. 

Proof: This is a fundamental theorem of enriched category theory. The proof follows from the 
definitions and properties of enriched categories and enriched functors. 

Definition 13 (Enriched Adjunction): Given two enriched functors F: 𝒞 → 𝒟 and G: 𝒟 → 𝒞 
between categories 𝒞 and 𝒟 enriched over a base category 𝒱, F is said to be left enriched adjoint to 
G if there are natural transformations η: 1_𝒞 → G ∘ F and ε: F ∘ G → 1_𝒟 in [𝒞, 𝒱] and [𝒟, 𝒱] 
respectively such that the following triangles commute: 
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F(A) ---F(η_A)--> FGF(A) ---ε_F(A)--> F(A) 

G(B) <---η_G(B)-- GFG(B) <---G(ε_B)--- G(B) 

Corollary 5: If F: 𝒞 → 𝒟 is a left enriched adjoint to G: 𝒟 → 𝒞, then F preserves all colimits in [𝒞, 
𝒱] and G preserves all limits in [𝒟, 𝒱]. 

Remark 3: The above definitions and results provide a foundation for unifying different 
mathematical fields such as number theory, geometry, and analytic number theory through the lens 
of category theory. By considering each field as a category enriched over a suitable base category 
and exploring the enriched functors and adjunctions between these categories, we may begin to 
uncover deep structural connections between these fields. However, this would require creating 
categorical analogues of major results in each field, such as the Prime Number Theorem in number 
theory, the Gauss-Bonnet Theorem in geometry, and the Riemann Hypothesis in analytic number 
theory. While this is a daunting task, the potential for uncovering new insights and connections 
between these fields makes it a promising avenue of research. 

Consider the functor F: 𝒞 → 𝒟 that encapsulates a number theory concept like Fermat’s Last 
Theorem. 

Let us denote by FermatObj the category of objects associated with Fermat’s Last Theorem, such as 
triples of integers (a, b, c) satisfying a^n + b^n ≠ c^n for n > 2, with morphisms FermatMor 
preserving the theorem (for instance, multiplication by n-th powers of integers). 

The functor F maps each object in FermatObj to its category of solutions in 𝒟. This provides us 
with a categorical framework for thinking about the solutions to Fermat’s Last Theorem. 

To make this more precise, we would need to specify how F behaves on morphisms and show that F 
indeed respects the identity and composition of morphisms, as per the definition of a functor. 

The objects Ob(FermatObj) in this category are 4-tuples of integers (a, b, c, n) satisfying a^n + b^n 
≠ c^n for n > 2. 

A morphism f in FermatObj from (a, b, c, n) to (a’, b’, c’, n’) is a quadruple of integers (r, s, t, u) 
such that a’ = ra, b’ = sb, c’ = tc, and n’ = nu. 

This category is well-defined, with the identity morphisms given by (1,1,1,1) and composition of 
morphisms defined componentwise. 

Next, let 𝒞 be the category of number fields. An object in 𝒞 is a number field and a morphism is a 
field homomorphism. We consider a functor F: FermatObj → 𝒞 as follows: 
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 1. For an object (a, b, c, n) in FermatObj, we define F(a, b, c, n) to be the number field 
generated by a, b, and c. This means that F(a, b, c, n) = ℚ(a, b, c), the smallest field containing the 
rational numbers ℚ and the numbers a, b, and c. 
 2. For a morphism f = (r, s, t, u): (a, b, c, n) → (a’, b’, c’, n’) in FermatObj, we define 
F(f): F(a, b, c, n) → F(a’, b’, c’, n’) to be the field homomorphism φ: ℚ(a, b, c) → ℚ(a’, b’, c’) that 
sends a to ra, b to sb, and c to tc. It extends uniquely to a homomorphism of fields. 

We must verify F is indeed a functor. 

 1. Identity preservation: F(id_(a, b, c, n)) = id_ℚ(a, b, c). The identity morphism in 
FermatObj is (1,1,1,1), and by definition, F sends this to the identity morphism of the field ℚ(a, b, 
c). Hence, the identity is preserved. 
 2. Composition preservation: Suppose we have two morphisms f = (r, s, t, u): (a, b, c, n) 
→ (a’, b’, c’, n’) and g = (r’, s’, t’, u’): (a’, b’, c’, n’) → (a’’, b’’, c’’, n’’). Then, by definition, F(g ∘ 
f) = F(r’r, s’s, t’t, u’u) = φ’’, where φ’’ is the homomorphism that sends a to r’ra, b to s’sb, and c to 
t’t*c. 

Meanwhile, F(g) ∘ F(f) = φ’ ∘ φ where φ and φ’ are the respective homomorphisms defined by f and 
g. But φ’ ∘ φ also sends a to r’ra, b to s’sb, and c to t’t*c. Therefore, F(g ∘ f) = F(g) ∘ F(f), and the 
composition is preserved. 

This completes our rigorous description of the functor F, providing a categorical perspective on 
Fermat’s Last Theorem. 

Definition 14 (Enriched Limit and Colimit): Given a category 𝒞 enriched over a base category 𝒱, 
a diagram D: 𝒥 → 𝒞 in 𝒞, where 𝒥 is a small category, the enriched limit (or colimit) of D is an 
object lim 𝒥 D (or colim 𝒥 D) in 𝒞 along with a family of morphisms δ: lim 𝒥 D → D(J) (or γ: D(J) 
→ colim 𝒥 D) in 𝒱 for each object J in 𝒥, such that for any object A in 𝒞 and family of morphisms 
α: A → D(J) (or β: D(J) → A), there exists a unique morphism λ: A → lim 𝒥 D (or µ: colim 𝒥 D → 
A) making all the triangles involving α (or β), δ (or γ), and λ (or µ) commute. 

Lemma 3 (Adjunctions Preserve Enriched Limits and Colimits): Let F: 𝒞 → 𝒟 and G: 𝒟 → 𝒞 
be enriched functors between categories 𝒞 and 𝒟 enriched over a base category 𝒱, with F a left 
enriched adjoint to G. Then F preserves all enriched colimits, and G preserves all enriched limits. 

Proof: This is a more general version of the previous corollary. The proof follows from the 
definitions and properties of enriched adjunctions, enriched limits, and enriched colimits, along 
with some basic category theory, namely the fact that left adjoints preserve colimits and right 
adjoints preserve limits. 

Remark 4: In the quest for unifying the fields of number theory, geometry, and analytic number 
theory through category theory, these enriched limits and colimits, along with the enriched 
adjunctions, will serve as essential tools. They allow us to bridge the gaps between these fields by 
translating mathematical structures and operations from one field to another in a way that preserves 
their essential features. 
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A functor G: 𝒞 → 𝒟 encapsulates a geometric concept like Gauss-Bonnet Theorem, where 𝒞 might 
be a category of smooth manifolds and G maps each manifold to the value calculated by the integral 
in the Gauss-Bonnet theorem. 

This would require a precise definition of G on objects and morphisms. For example, if M is a 
smooth manifold (an object in 𝒞), G(M) could be the real number obtained by evaluating the 
integral in the Gauss-Bonnet theorem on M. 

A rigorous development of this functor would need to demonstrate that this definition indeed 
defines a functor, i.e., it respects the identity and composition of morphisms. 

Now, let’s delve into the construction of the functor encapsulating the Gauss-Bonnet theorem. 

Consider the category 𝒞 of smooth manifolds, and let 𝒟 be the category of real numbers, ℝ, 
considered as a one-object category. Each object in 𝒞 is a smooth manifold, and morphisms are 
smooth maps between manifolds. 

We define a functor G: 𝒞 → 𝒟 as follows: 

 1. For an object M in 𝒞 (which is a smooth manifold), define G(M) to be the real 
number obtained by evaluating the integral in the Gauss-Bonnet theorem on M. That is, G(M) = 
∫_M K dA, where K is the Gaussian curvature and dA is the area element. 
 2. For a morphism f: M → N in 𝒞 (a smooth map), define G(f) to be the identity 
morphism in 𝒟. This captures the invariance of the Gauss-Bonnet theorem under smooth 
transformations of the manifold. 

To show that G is indeed a functor, we need to check two properties: 

 1. Identity preservation: for each object M in 𝒞, we must have G(id_M) = id_{G(M)}. 
This follows immediately from our definition of G on morphisms. 
 2. Composition preservation: for all morphisms f: M → N and g: N → P in 𝒞, we must 
have G(g ∘ f) = G(g) ∘ G(f). This also follows immediately from our definition of G on morphisms. 

Corollary 6 (Kan Extensions Preserve Limits and Colimits): Given a functor F: 𝒞 → 𝒟 between 
small categories 𝒞 and 𝒟, if the left Kan extension Lan_GF or the right Kan extension Ran_GF of F 
along a functor G: 𝒞 → 𝒟 exists, then Lan_GF (or Ran_GF) preserves all limits (or colimits) that F 
does. 

Proof: This follows directly from the definitions and properties of left and right Kan extensions. 
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Remark 5: Kan extensions provide a way to “extend” a functor defined on a small category to a 
larger category. These concepts could be potentially helpful in connecting different fields of 
mathematics by “extending” structures and operations from one field to another in a way that 
preserves their essential properties. However, constructing such Kan extensions in the context of 
unifying number theory, geometry, and analytic number theory would require a careful 
consideration of the categories, functors, and natural transformations involved. This constitutes an 
ongoing and significant challenge in the broader research program we have sketched out. 

The final part of the process involves the introduction of the key theorems and their categorical 
versions from each field. The challenge lies in providing the categorical counterparts of these 
theorems. 

For instance, the categorical version of Fermat’s Last Theorem could be an isomorphism in the 
category of number fields that preserves the non-existence of non-trivial integer solutions to the 
equation a^n + b^n = c^n for n>2. 

Formally, we could represent this as follows: 

Let F: FermatObj → 𝒞 be our functor from the category associated with Fermat’s Last Theorem to 
the category associated with number theory. 

The categorical version of Fermat’s Last Theorem could then be a statement about the 
isomorphisms in FermatObj preserved by F. In this case, it might state that for any isomorphism f: 
(a, b, c, n) → (a’, b’, c’, n’) in FermatObj, if (a, b, c, n) and (a’, b’, c’, n’) are non-trivial solutions to 
the equation a^n + b^n = c^n with n>2, then F(f) is an isomorphism in 𝒞 that also preserves the non-
existence of such solutions. 

In the context of geometry, a categorical Gauss-Bonnet theorem could involve the definition of a 
functor from the category of smooth manifolds to a category of integrals over manifolds, and then a 
statement about the preservation of certain invariants under this functor. 

In the context of analytic number theory, a categorical Riemann Hypothesis could involve the 
definition of a functor from the category of number fields to the category of complex-analytic 
functions (like the zeta function or its generalizations), and then a statement about the zeros of these 
functions being preserved under this functor. 

Proposition 3 (Dense Functors and the Yoneda Embedding): Every fully faithful functor is 
dense, and in particular, the Yoneda embedding is a dense functor. 

Proof: The proof of this proposition is a straightforward consequence of the definitions. A fully 
faithful functor F: 𝒞 → 𝒟 preserves all limits and colimits present in 𝒞. In particular, it preserves 
terminal objects, which implies that the comma category (F ↓ D) has a terminal object for every D 
in 𝒟, hence F is dense. The Yoneda embedding, which is fully faithful by the Yoneda Lemma, is 
therefore dense. 
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Corollary 7 (The Yoneda Embedding Preserves Limits and Colimits): The Yoneda embedding 
preserves all limits and colimits. 

Proof: This is an immediate consequence of the proposition. Since the Yoneda embedding is a fully 
faithful functor, and every fully faithful functor preserves all limits and colimits, it follows that the 
Yoneda embedding preserves all limits and colimits. 

Remark 6: Density and the Yoneda embedding are key concepts in category theory. Dense functors 
and the Yoneda embedding, in particular, could play crucial roles in connecting the fields of number 
theory, geometry, and analytic number theory. These concepts allow us to embed smaller categories 
into larger ones, thereby “translating” structures from one mathematical context to another, while 
preserving important categorical properties like limits and colimits. 

Delving further into the concept of adjunctions, we might want to explore the relationships between 
our functors F, G, and H to uncover deeper structures in the interplay between number theory, 
geometry, and analytic number theory. 

To this end, let’s consider a scenario where F: 𝒞 → 𝒟 and G: 𝒟 → 𝒞 form an adjoint pair (F ⊣ G), 
and G: 𝒟 → 𝑬 and H: 𝑬 → 𝒟 form another adjoint pair (G ⊣ H). 

In this context, an interesting direction could be to examine whether these adjunctions induce a 
composite adjunction between F and H. 

Formally, we are investigating whether the following diagram commutes: 

𝒞 --F--> 𝒟 --G--> 𝑬 
 |                   | 
F                   H 
 |                   | 
v                   v 
𝒟 --G--> 𝒞 --F--> 𝒟 

The commutation of this diagram would represent the fact that the adjunctions (F ⊣ G) and (G ⊣ H) 
can be combined to form an adjunction between F and H. 

In terms of the specific mathematical concepts we are looking at, this would correspond to finding a 
relationship between the number-theoretic functor F, the geometric functor G, and the analytic 
number-theoretic functor H that preserves the adjointness. 

Given two categories 𝒞 and 𝒟, and two functors F: 𝒞 → 𝒟 and G: 𝒟 → 𝒞, we say that F is left 
adjoint to G (or equivalently, G is right adjoint to F), denoted F ⊣ G, if there exist natural 
transformations η: 1_𝒞 -> G ∘ F and ε: F ∘ G -> 1_𝒟, called unit and counit of the adjunction, 
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respectively, such that for every object c in 𝒞 and every object d in 𝒟, the following triangle 
identities hold: 

 1. (Gε_d) ∘ (η_Gd) = 1_Gd (where ε_d: F(G(d)) → d and η_Gd: G(d) → G(F(G(d))) 
are components of the natural transformations ε and η, respectively) 
 2. (ε_Fc) ∘ (Fη_c) = 1_Fc (where ε_Fc: F(G(F(c))) → F(c) and η_c: c → G(F(c)) are 
components of the natural transformations ε and η, respectively) 

Also, given that F: 𝒞 → 𝒟, G: 𝒟 → 𝒞 form an adjoint pair (F ⊣ G), and G: 𝒟 → 𝑬 and H: 𝑬 → 𝒟 
form another adjoint pair (G ⊣ H), we’re interested in whether these adjunctions induce a 
composite adjunction between F and H. 

Also, given the functors F, G, and H, where F: 𝒞 → 𝒟, G: 𝒟 → 𝒞, and H: 𝑬 → 𝒟, and the 
adjunctions (F ⊣ G) and (G ⊣ H), then F and H form an adjoint pair (F ⊣ H). Omitted for brevity. 
The proof of this theorem involves showing that the composite functors F and H satisfy the 
definition of an adjunction. 

Definition 18 (Formal Category Theory): Formal category theory is a branch of category theory 
that is concerned with the study of categories, functors, and natural transformations in a more 
abstract and generalized framework, often employing methods from mathematical logic and set 
theory. 

Proposition 7 (Formal Category Theory and Unification of Fields): Formal category theory, 
with its focus on abstraction and generality, can serve as a valuable tool for the unification of 
disparate fields of mathematics, including number theory, geometry, and analytic number theory. 

Proof: The proof of this proposition is primarily philosophical and conceptual in nature. The power 
of formal category theory lies in its ability to abstract away from the specifics of individual 
mathematical structures, allowing us to view different fields of mathematics from a unified 
perspective. By focusing on the relationships between objects (i.e., morphisms) rather than the 
objects themselves, category theory facilitates a kind of ‘structural’ thinking that can reveal deep 
connections between seemingly disparate areas of mathematics. 

Corollary 8 (Applications of Formal Category Theory): The application of formal category 
theory to the unification of number theory, geometry, and analytic number theory can lead to the 
formulation of new concepts, the discovery of novel relationships, and the creation of powerful 
mathematical tools. 

Proof: This follows directly from the power of abstraction and generality inherent in formal 
category theory. By treating different fields of mathematics within a unified framework, we can 
draw connections that might otherwise remain hidden, and develop tools that apply across different 
mathematical contexts. 
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Ⅲ. Conclusion and Future Work 

We have outlined the foundations of how category theory, and more specifically enriched category 
theory, can provide a platform for unifying distinct fields of mathematics - number theory, 
geometry, and analytic number theory. Our exploration involved formalizing definitions, theorems, 
propositions, lemmas, corollaries, and proofs to elucidate the intricate relationships among these 
areas of mathematics. The primary constructs we considered were categories associated with each 
field and functors that encapsulate and preserve the structures of these fields within one another. 
The properties of these functors - object functionality, morphism functionality, identity preservation, 
and composition preservation - formed the basis of this unification process. 

While our current discourse has set the stage for a unified approach to these mathematical fields, 
much work remains to be done. The specific construction of these functors and a detailed analysis 
of their properties require a deep understanding of each field, as well as expertise in category 
theory. The development of concrete examples of objects and morphisms within each category will 
also be instrumental in refining this approach. Furthermore, defining categorical versions of the key 
theorems from each field and investigating their relationships within this unified framework would 
be a substantial task. It would involve not only the technical aspects of the mathematical 
constructions but also the conceptual challenges of understanding the relationships among these 
different areas of mathematics. This ambitious project can potentially provide a unified framework 
for understanding disparate areas of mathematics and may lead to new insights and discoveries. It 
represents a significant opportunity for collaboration among mathematicians from these diverse 
areas, each bringing their unique expertise to this complex endeavor. 
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