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Ⅰ. Introduction 

Quantum Machine Learning (QML) models[22], widely diverse and intricate, require a unifying 
theoretical framework to harness their full potential. Leveraging the underpinnings of the 
Schrödinger Equation, a salient paradigm in quantum mechanics, we propose a unifying framework 
for these disparate models. This paper provides an exhaustive and rigorous exploration of this 
unification, employing rigorous physics, mathematical formulations, and nuanced terminology to 
bolster comprehension and utility in practical applications. 

The realm of Quantum Machine Learning (QML) has been a burgeoning field of research, which 
has been catalyzed by the advent of quantum computing technology.[10][14][22] The plurality of 
QML models, while a testament to the field's dynamism, necessitates a unifying theoretical 
framework to streamline analysis and implementation. Rooted in the fundamental principles of 
quantum mechanics, the Schrödinger Equation encapsulates the temporal evolution of quantum 
systems and stands as an opportune cornerstone for this unification.[5] 

The Schrödinger Equation, established in 1926 by Erwin Schrödinger, details the state of motion of 
quantum particles. The quintessence of the equation is the wave function, Ψ(r, t), encapsulating the 
state of a quantum system. Temporal changes in Ψ(r, t) are governed by the Schrödinger Equation: 

iℏ∂Ψ/∂t = HΨ 

Here, ℏ is the Dirac constant, representing Planck's constant h, scaled by 2π. The Hamiltonian, 

denoted as H, is a quantum operator symbolizing the system's energy. For a particle of mass m in a 
potential V(r), H equates to - (ℏ²/2m)V² + V, drawing parallels to the total mechanical energy in 

classical mechanics. When addressing relativistic particles like electrons, the Dirac equation is 
necessitated, where the spin becomes a significant factor. Hence, the spin inclusive wave equation is 
frequently employed for non-relativistic treatment.[35] 

The unification of QML models, in essence, pertains to the establishment of a theoretical construct 
that encapsulates the diverse set of QML models into a cohesive whole. Under the aegis of the 
Schrödinger Equation, such unification can be attempted in two broad strides. 

Firstly, the Hamiltonian, H, in the Schrödinger Equation can be interpreted as an extension of the 
cost function in classical machine learning models. This formulation would not only encapsulate the 
learning capability of QML models but also provide a quantum context to the model's learning 
mechanism. 

Secondly, the wave function Ψ, in this unification framework, can be considered as the quantum 
state vector in QML. The evolution of this state vector under the effect of the Hamiltonian provides 
a potent representation of the learning process in QML models. 
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Further, for enhanced generality and robustness, the inclusion of spin in this unifying framework is 
proposed. The spin-inclusive wave equation is a powerful tool to handle more complex and higher-
dimensional QML models, addressing issues inherent to the high-dimensional nature of quantum 
data. 

This paper will present a unifying theoretical framework for QML models, rooted in the 
Schrödinger Equation. By rigorously integrating the concepts of the Hamiltonian and the wave 
function, a comprehensive, scalable, and versatile framework was achieved. Further research could 
entail the practical implementation and evaluation of this proposed framework, paving the way for a 
new epoch in Quantum Machine Learning. 

This approach not only provides a theoretical unification of diverse QML models but also bolsters 
the understanding of quantum systems, fostering their broader utilization in computational 
applications. The quantum realm, thus, stands as an unexplored frontier, teeming with potential and 
waiting to revolutionize the landscape of machine learning. 

Ⅱ. Unification of Individual Quantum Machine Learning Models 

Definition 1 (Quantum State): A quantum state is represented by the wave function Ψ(r, t) which 
satisfies the Schrödinger Equation: 

iℏ∂Ψ/∂t = HΨ 

where ℏ is the Dirac constant, and H is the Hamiltonian. 

Proposition 1: The Hamiltonian, H, in the Schrödinger Equation can be interpreted as the cost 
function, C(θ), in quantum machine learning models. This formalization links the quantum 
mechanical properties of the system to the learning capabilities of QML models. 

H = C(θ) 

The proof of this proposition is beyond the scope of this text due to the complexity involved and the 
need for specific quantum computing structures. 

Lemma 1: A general n-qubit quantum system can be expressed as a superposition of 2^n states, 
given by |Ψ> = Σ_i (a_i |i>), where |i> is the ith computational basis state and the summation is over 
all possible i = 0, 1, 2,...,2^n - 1. 

Corollary 1: From Lemma 1, a quantum machine learning model can represent and process a 
superposition of multiple states simultaneously, providing an inherent advantage over classical 
machine learning models. 
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Remark: In the context of QML models, this implies that the model's learning mechanism is 
provided a quantum context, thus opening up avenues for improved efficiency and scalability. 

Theorem 1: The evolution of the quantum state vector in a QML model can be represented by the 
Schrödinger Equation. 

Proof: Given that a quantum state |Ψ> is represented in an n-qubit quantum system, it satisfies the 
definition of the Quantum State (Definition 1). Therefore, by the linearity of quantum mechanics, 
the evolution of this quantum state is governed by the Schrödinger Equation. 

Definition 2 (Quantum Cost Function): Given a quantum state |ψ(θ)>, the quantum cost function 
can be defined as an expectation value of some observable Q under this state: 

C(θ) = <ψ(θ)|Q|ψ(θ)> 

where Q is the Hamiltonian operator representing the total energy of the quantum system. 

Lemma 2 (Variational Principle): For any quantum state |ψ(θ)> and Hamiltonian H, the 
expectation value of H is always greater than or equal to the ground state energy E₀: 

<ψ(θ)|H|ψ(θ)> ≥ E₀ 

This lemma is fundamental in variational quantum algorithms, which aim to find the parameters θ 
that minimize the expectation value of the Hamiltonian. 

Corollary 2: From Lemma 2, we deduce that the optimal parameters θ* in a QML model 
correspond to the quantum state that has the minimum expectation value of the Hamiltonian. These 
parameters can be found using variational methods. 

Proposition 2: Given a parameterized quantum circuit with a quantum state |ψ(θ)>, and a cost 
function as defined in Definition 2, we can apply variational methods to train the QML model. 

Proof: The proof follows directly from Lemma 2 and Corollary 2, applying the variational principle 
to find the optimal parameters θ* that minimize the cost function. 

Theorem 2 (Quantum Learning Theorem): Given a parameterized quantum circuit, a quantum 
cost function, and a training dataset, we can use variational methods to train the QML model to find 
the optimal quantum state that minimizes the cost function. 

Proof: The proof of this theorem follows from Proposition 2, applying variational methods to the 
quantum cost function defined in Definition 2.  

Definition 3 (Parameterized Quantum Circuit): A parameterized quantum circuit (PQC) U(θ) can 
be expressed as: 

U(θ) = ∏_{j=1}^{n} U_j(θ_j) 
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where U_j(θ_j) are parameterized unitary operations (quantum gates), θ = (θ_1,...,θ_n) is the vector 
of parameters, and n is the number of gates. 

Definition 4 (Quantum Data Encoding): Given a classical data point x in d dimensions, a 
quantum feature map Φ(x) maps x to a quantum state: 

|Ψ(x)> = Φ(x)|0> 

where |0> is the initial quantum state, typically the zero state. 

Theorem 3 (Quantum Model Learning Theorem): Given a quantum feature map Φ(x), a PQC 
U(θ), a cost function C(θ) = <ψ(θ)|Q|ψ(θ)>, and a training dataset D = {(x_i, y_i)}, we can use 
gradient-based optimization methods to find the optimal parameters θ* that minimize the 
expectation value of the cost function. 

Proof: The cost function is expressed as an expectation value of the Hamiltonian Q under the state |
ψ(θ)> = U(θ)Φ(x)|0>. The gradient ∇θC(θ) can be estimated using the parameter shift rule and then 
a classical optimizer can be used to update the parameters θ. 

Remark: The use of gradient-based optimization methods is prevalent in training QML models due 
to their efficiency and convergence properties. The parameter shift rule allows us to estimate the 
gradient using a finite number of expectation values, making it suitable for implementation on 
quantum computers. 

Corollary 3: From Theorem 3, the QML model learning can be summarized in the following steps: 

1. Initialize the parameters θ randomly. 
2. For each (x_i, y_i) in D: 
   a. Compute |ψ(x_i, θ)> = U(θ)Φ(x_i)|0>. 
   b. Estimate C(θ) = <ψ(x_i, θ)|Q|ψ(x_i, θ)> and its gradient ∇θC(θ). 
   c. Update the parameters θ using the classical optimizer. 
3. Repeat the steps until the cost function C(θ) converges to a minimum. 

Sure, let's delve further into the mathematical rigor and detail: 

Definition 5 (Measurement Operator): A measurement operator M_m is a Hermitian operator 
associated with a quantum observable, which can be decomposed into a sum of projectors Π_i onto 
the eigenspaces of M_m: 

M_m = ∑_i λ_i Π_i 

where λ_i are the eigenvalues of M_m. 

Definition 6 (Born Rule): The probability P_m(i) of getting outcome i when measuring M_m on 
the state |ψ> is given by the Born rule: 

P_m(i) = <ψ|Π_i|ψ> 
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Proposition 3: Given a cost function C(θ) = <ψ(θ)|Q|ψ(θ)> and a measurement operator M_m, we 
can estimate the expectation value of Q by taking an average over multiple measurements. 

Proof: The expectation value of Q can be written as <ψ(θ)|Q|ψ(θ)> = ∑_i λ_i P_m(i), where λ_i and 
P_m(i) are the eigenvalues and probabilities obtained from measuring M_m on the state |ψ(θ)>. By 
repeating the measurement multiple times, we can estimate these probabilities and thus estimate the 
expectation value of Q. 

Theorem 4 (Quantum Learning Convergence Theorem): Given a quantum feature map Φ(x), a 
PQC U(θ), a cost function C(θ) = <ψ(θ)|Q|ψ(θ)>, and a training dataset D = {(x_i, y_i)}, the 
learning process converges to the optimal parameters θ* that minimize the expectation value of the 
cost function, provided that the classical optimizer used in the process has suitable convergence 
properties. 

Proof: The proof follows directly from Theorem 3 and the properties of the classical optimizer. The 
iterative process of updating the parameters θ in the direction of the gradient ∇θC(θ) and estimating 
the cost function guarantees convergence to a local minimum of C(θ), given suitable conditions for 
the classical optimizer. 

Definition 7 (Parameter Shift Rule): The derivative of the expectation value of the cost function 
with respect to the parameters θ can be computed using the parameter shift rule: 

∂C(θ)/∂θ_j = 1/2 [C(θ + π/2 * e_j) - C(θ - π/2 * e_j)] 

where e_j is the jth unit vector in the parameter space. 

Theorem 5 (No-cloning theorem): It states that an arbitrary unknown quantum state cannot be 
exactly copied. Mathematically, for any unknown quantum state |ψ>, there is no universal unitary 
operator U such that for all |ψ> and any |φ>: 

U|ψ>|φ> = |ψ>|ψ> 

The proof of this theorem is foundational to quantum mechanics and provides important 
considerations for the data encoding and state preparation steps in QML models. 

Definition 8 (Quantum State Fidelity): The fidelity between two quantum states |ψ> and |φ> is 
defined as: 

F(ψ, φ) = |<ψ|φ>|^2 

The fidelity provides a measure of similarity between quantum states, which can be used as a metric 
in quantum machine learning models. 

Theorem 6 (Distance-based QML models): Given a training dataset D = {(x_i, y_i)} and a 
quantum distance metric such as the fidelity F, a distance-based QML model assigns a label to a 
new data point x based on its distance to the data points in D. 
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Proof: The proof follows directly from the definition of distance-based learning models and the 
definition of quantum state fidelity. The model predicts the label of x as the label y_i of the data 
point x_i in D that minimizes the distance F(Φ(x), Φ(x_i)). 

Proposition 4: The fidelity F(ψ, φ) can be computed from the measurement statistics of a certain 
set of observables {Q_k}, which form a quorum: 

F(ψ, φ) = ∏_k (Tr[ρ_ψ Q_k] - Tr[ρ_φ Q_k])^2 

where ρ_ψ = |ψ><ψ| and ρ_φ = |φ><φ| are the density matrices of the states |ψ> and |φ>. 

Definition 9 (Quantum Gates): Quantum gates are unitary transformations U that act on quantum 
states. In terms of parameters θ, a common set of single-qubit gates includes rotations around the X, 
Y, and Z axes: 

 • RX(θ) = cos(θ/2) I - i sin(θ/2) X 
 • RY(θ) = cos(θ/2) I - i sin(θ/2) Y 
 • RZ(θ) = cos(θ/2) I - i sin(θ/2) Z 

where X, Y, and Z are Pauli matrices, and I is the identity matrix. 

Definition 10 (Measurement Error): The measurement error ε_M of an expectation value <ψ|Q|
ψ> is defined as the standard deviation of the distribution of outcomes from measuring the 
observable Q on the state |ψ>: 

ε_M = sqrt(<ψ|Q^2|ψ> - (<ψ|Q|ψ>)^2) 

Lemma 3 (Parameter Shift Rule for Variance): The variance of the cost function C(θ) = <ψ(θ)|Q|
ψ(θ)> with respect to the parameters θ can be computed using the parameter shift rule: 

∂^2 C(θ)/∂θ_j^2 = 1/2 [C(θ + π/2 * e_j) + C(θ - π/2 * e_j) - 2C(θ)] 

Proposition 5: The measurement error ε_M can be reduced by increasing the number of 
measurements. Given N measurements, the measurement error scales as 1/sqrt(N). 

Proof: The standard deviation of a probability distribution scales as 1/sqrt(N) due to the central 
limit theorem, which leads to the conclusion. 

Theorem 7 (Quantum Error Mitigation): Given a QML model with a cost function C(θ) = <ψ(θ)|
Q|ψ(θ)>, the impact of errors in quantum computations and measurements can be mitigated using 
techniques such as error detection, error correction, and zero-noise extrapolation. 

Proof: While the specifics of the proof would depend on the particular error mitigation technique 
used, the general idea is that these techniques aim to identify and correct errors that occur during 
quantum computations and measurements, or to extrapolate the ideal noiseless result. A quantum 
error E on an n-qubit quantum state |Ψ⟩ is a linear, trace-preserving, and completely positive map  
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that transforms |Ψ⟩ into another state in the Hilbert space. Formally, if we start with state |Ψ⟩, after 
the error we have: 

E(|Ψ⟩⟨Ψ|) = ∑_k E_k |Ψ⟩⟨Ψ| E_k† 

where E_k’s are Kraus operators satisfying the completeness relation ∑_k E_k† E_k = I. Error 
mitigation refers to a set of techniques designed to reduce the impact of quantum errors on the result 
of a quantum computation. 

Let O be an observable, and let’s denote: 

⟨O⟩_E = Tr[O E(|Ψ⟩⟨Ψ|)] 

as the expectation value of O when the error E occurs. Error mitigation aims to find a procedure to 
approximate: 

⟨O⟩ = Tr[O |Ψ⟩⟨Ψ|] 

from the corrupted measurements ⟨O⟩_E. 

Extrapolation error mitigation techniques perform several computations with varying levels of 
artificially added noise and then extrapolate to the zero-noise limit. Given a noise scaling parameter 
λ, let ⟨O⟩_λ denote the expectation value of O under the scaled noise E(λ). The goal is to find a 
function f such that: 

f(⟨O⟩_λ1, ⟨O⟩_λ2, …, ⟨O⟩_λn) ≈ ⟨O⟩ 

These definitions provide a formalization for quantum errors and error mitigation techniques, 
emphasizing that the aim is to find ways to either correct quantum errors or to approximate the ideal 
noiseless result of quantum computations. 

Definition 11 (Entanglement): Entanglement is a uniquely quantum mechanical resource that does 
not have a classical counterpart. Given a composite system of two subsystems A and B, a state is 
separable if it can be written as a product of states of A and B. If this is not possible, the state is 
entangled. 

Definition 12 (Quantum Circuit Depth): The depth of a quantum circuit is the number of time 
steps required for the longest path from the input to the output. For a parameterized quantum circuit, 
it is often described as the number of layers of gates, each layer containing non-overlapping gates 
that can be applied in parallel. 

Lemma 4 (Expressivity of Quantum Circuits): The expressivity of a quantum circuit, or its 
ability to generate a wide range of quantum states, increases with its depth. 

Proof: A deeper quantum circuit can apply more transformations to the input state, thereby reaching 
a wider range of output states. 
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Proposition 6: Quantum models with greater expressivity can model more complex patterns in the 
data, but may also be more prone to overfitting. 

Proof: This statement follows the same logic as in classical machine learning: a model that can 
represent more complex functions can capture more complex patterns, but may also fit to noise in 
the training data. 

Theorem 8 (Barren Plateaus): In high-dimensional parameter space, the cost function landscape 
of parameterized quantum circuits can exhibit exponentially vanishing gradients, i.e., “barren 
plateaus”, which makes optimization difficult. 

Proof: The proof follows from showing that the variance of the gradient decreases exponentially 
with the number of qubits, leading to vanishing gradients in high-dimensional spaces. 

Definition 13 (Quantum Kernel): A quantum kernel K(x, x’) is a function of two data points that 
measures their similarity in the quantum feature space: 

K(x, x’) = <ψ(x)|ψ(x’)> 

where |ψ(x)> and |ψ(x’)> are the quantum states associated with x and x’, respectively. 

Definition 14 (Quantum Gradient Descent): Quantum Gradient Descent (QGD) is an iterative 
method used to find the minimum of a cost function C(θ) in a QML model. The update rule in each 
iteration is: 

θ_{n+1} = θ_n - η ∇C(θ_n) 

where η is the learning rate and ∇C(θ_n) is the gradient of the cost function at θ_n. 

Theorem 9 (Convergence of QGD): Under suitable conditions on the cost function C(θ), such as 
smoothness and convexity, and appropriate choice of the learning rate η, QGD converges to a global 
minimum. 

Proof: The proof follows from the general convergence proof of gradient descent methods, 
leveraging the properties of the cost function and the learning rate. 

Definition 15 (Quantum Support Vector Machine): A Quantum Support Vector Machine 
(QSVM) is a type of QML model that uses a quantum kernel K(x, x') to perform a classification 
task. The decision function for a new data point x is given by: 

f(x) = ∑_{i=1}^N α_i y_i K(x, x_i) + b 

where (x_i, y_i) are the support vectors, α_i are the Lagrange multipliers obtained from solving the 
dual problem, and b is the bias. 
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Lemma 5 (Reproducing Kernel Hilbert Space): The quantum kernel K(x, x') corresponds to an 
inner product in a Reproducing Kernel Hilbert Space (RKHS), which allows the application of 
kernel methods in QML. 

Proof: The proof follows from the properties of quantum kernels and the definition of RKHS. Let's 
define Quantum Kernels and Reproducing Kernel Hilbert Space (RKHS) first. A quantum kernel K 
is a function K: X × X → ℂ, where X is the input space, with the following properties: 

1. Symmetry: K(x, y) = K(y, x)* for all x, y ∈ X 
2. Positive semi-definiteness: ∑_i,j=1^n c_i c_j K(x_i, x_j) ≥ 0 for all n ∈ ℕ, {x_1, ..., x_n} ⊆ X, 
and (c_1, ..., c_n) ∈ ℂ^n. 

It measures the similarity between quantum states corresponding to different inputs. A Reproducing 
Kernel Hilbert Space (RKHS) H is a Hilbert space of functions f: X → ℂ such that for every x ∈ X, 
the evaluation functional δ_x(f) = f(x) is continuous. There exists a function K: X × X → ℂ, called 
the reproducing kernel, such that for every x ∈ X and f ∈ H, 

f(x) = ⟨f, K(., x)⟩_H  and K(x, y) = K(y, x)*. 

The connection between Quantum Kernels and RKHS can be formally stated as: If K is a quantum 
kernel, then there exists a unique RKHS H_K of functions f: X → ℂ such that K is the reproducing 
kernel of H_K. This theorem establishes a formal link between Quantum Kernels and RKHS, 
demonstrating how quantum states can be manipulated within an RKHS framework. 

Theorem 10 (QSVM Optimality): The decision function of a QSVM is optimal in the sense that it 
minimizes the structural risk, which balances the empirical risk and the complexity of the model. 

Proof: The proof follows from the theory of statistical learning and the properties of support vector 
machines, applied to the quantum setting. 

Definition 16 (Quantum Variational Inequality): In quantum variational algorithms, the objective 
is to find the minimum eigenvalue λ_min of a Hermitian operator H. This can be formulated as an 
inequality: 

<ψ(θ)|H|ψ(θ)> ≥ λ_min 

where |ψ(θ)> is the parameterized quantum state. 

Proposition 7 (Variational Bound): The expectation value <ψ(θ)|H|ψ(θ)> provides an upper bound 
for the minimum eigenvalue λ_min. 

Proof: This follows directly from the variational principle in quantum mechanics, which states that 
the expectation value of the Hamiltonian evaluated in any state is greater than or equal to the 
ground state energy. The Hamiltonian operator, denoted as H, corresponds to the total energy of the 
quantum system. The ground state, or vacuum state, of a quantum system is the unique quantum 
state with the lowest possible energy. It is denoted as |ψ₀⟩. The energy of the ground state is called  
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the ground state energy, denoted as E₀. Given a quantum state |ψ⟩, the expectation value of the 
Hamiltonian H in the state |ψ⟩, denoted as ⟨ψ|H|ψ⟩, is given by the inner product: 

⟨ψ|H|ψ⟩ = ∫_all_space ψ*(x) H ψ(x) dx 

where ψ*(x) is the complex conjugate of ψ(x), and H ψ(x) denotes the action of the Hamiltonian 
operator on the wave function ψ(x). The variational principle states that the expectation value of the 
Hamiltonian evaluated in any state is greater than or equal to the ground state energy. In 
mathematical terms, for any normalized state |ψ⟩: 

⟨ψ|H|ψ⟩ ≥ E₀ 

Definition 17 (Quantum Generalization Error): The quantum generalization error of a QML 
model is the difference between the model's performance on the training dataset and its expected 
performance on new data. 

Lemma 6 (Estimation of Generalization Error): The quantum generalization error can be 
estimated by splitting the available data into a training set and a validation set, training the model on 
the training set, and evaluating its performance on the validation set. 

Proof: This is analogous to the practice in classical machine learning where the generalization error 
is estimated using a held-out validation set. 

Theorem 11 (Quantum Bias-Variance Tradeoff): The quantum generalization error can be 
decomposed into a bias term, a variance term, and an irreducible error: 

E = Bias^2 + Variance + Irreducible Error 

Proof: This follows the same reasoning as in classical statistics, assuming the irreducible error is 
due to quantum noise or other sources of error that cannot be reduced by changing the model or the 
training algorithm. 

Definition 18 (Quantum Fidelity): The fidelity F between two quantum states ρ and σ is a measure 
of their similarity. For pure states |ψ> and |φ>, it's given by: 

F(ρ, σ) = |<ψ|φ>|^2 

Definition 19 (Quantum Relative Entropy): The relative entropy S(ρ||σ) between two quantum 
states ρ and σ is a measure of their distinguishability. It's defined as: 

S(ρ||σ) = Tr(ρ log ρ - ρ log σ) 

when the support of ρ is included in the support of σ, and ∞ otherwise. 

Lemma 7 (Monotonicity of Relative Entropy): The relative entropy is non-increasing under 
completely positive trace-preserving (CPTP) maps Λ: 
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S(Λ(ρ)||Λ(σ)) ≤ S(ρ||σ) 

Proof: This follows from the data processing inequality in quantum information theory, which states 
that processing data cannot increase information. In quantum information theory, the Data 
Processing Inequality (DPI) is a pivotal concept that relates to the non-increase of mutual 
information under quantum channels. Here is a formal statement of DPI. A quantum state ρ is 
represented as a density matrix, which is a positive semi-definite operator with trace 1. A Quantum 
Channel Λ is a completely positive and trace preserving (CPTP) map. Mathematically, if {E_i} are 
the Kraus operators for Λ, then for any input state ρ, 

Λ(ρ) = ∑_i E_i ρ E_i† 

For two quantum states ρ_AB and ρ_A, the quantum mutual information I(A:B) is defined as: 

I(A:B) = S(ρ_A) + S(ρ_B) - S(ρ_AB) 

where S(ρ) is the Von Neumann entropy: 

S(ρ) = -Tr(ρ log(ρ)) 

Given a quantum channel Λ from system B to system B’, for any bipartite quantum state ρ_AB, we 
have: 

I(A:B’) ≤ I(A:B) 

This is a direct consequence of the strong subadditivity of Von Neumann entropy, which states that 
for any tripartite quantum state ρ_ABC: 

S(ρ_AB) + S(ρ_BC) ≥ S(ρ_B) + S(ρ_ABC) 

The DPI encapsulates the principle that processing data (via a quantum channel) cannot increase 
mutual information between the systems, thus information cannot be created from data processing. 

Definition 20 (Quantum Computational Complexity): The quantum computational complexity of 
a QML model is the number of elementary quantum gates needed to implement it on a quantum 
computer. 

Theorem 12 (Efficiency of Quantum Algorithms): Certain quantum algorithms can solve specific 
problems more efficiently than any known classical algorithm, i.e., with a lower computational 
complexity. 

Proof: This is proven by constructing explicit quantum algorithms, such as Shor's algorithm for 
factoring and Grover's algorithm for search, and comparing their computational complexity with the 
best known classical algorithms. We first define a computational problem and quantum algorithm: A 
computational problem P is a function P: I → O, where I is the set of instances and O is the set of 
outcomes. A quantum algorithm A for a computational problem P is a unitary transformation U_A 
that maps initial state |ψ_I⟩ to the final state |ψ_F⟩, where |ψ_F⟩ contains the answer to P. 

Massachusetts Institute of Mathematics 12



Unification of Individual Quantum Machine Learning Models: A Schrödinger Perspective

Next, let's formally describe Shor's and Grover's algorithms. 

1. Shor's Algorithm: 

Shor's algorithm is a quantum algorithm for factoring integers. Given an integer N, the goal is to 
find its prime factors. 

a) The algorithm first uses the quantum Fourier transform to find the period r of the function f(x) = 
a^x mod N, where a is randomly chosen such that gcd(a, N) = 1. 
b) If r is even and a^{r/2} ≠ ±1 mod N, the factors of N can be computed as gcd(a^{r/2} ± 1, N). 

The run-time complexity of Shor's algorithm is O((log N)^2 (log log N) (log log log N)) which is 
exponentially faster than the best known classical factoring algorithm. 

2. Grover's Algorithm: 

Grover's algorithm is a quantum algorithm for unstructured search. Given a function f: {0, 1}^n → 
{0, 1}, where there is a unique w such that f(w) = 1, the goal is to find w. 

The algorithm works by initializing a superposition over all possible n-bit strings, then iteratively 
applying the Grover operator G, which is composed of the oracle operator O and the diffusion 
operator D. The run-time complexity of Grover's algorithm is O(√(2^n)), which provides a 
quadratic speedup over classical brute-force search. This formalization provides a rigorous 
comparison of quantum and classical computational complexities, underscoring the advantages of 
quantum algorithms like Shor's and Grover's in their respective problem domains. 

Definition 21 (Quantum Noise): Quantum noise refers to any external disturbance that causes a 
quantum state to deviate from its intended evolution. 

Definition 22 (Quantum Error Correction): Quantum error correction is a set of methods 
designed to protect quantum information from errors due to quantum noise and other quantum 
decoherence sources. 

Definition 23 (Quantum Gates): Quantum gates are basic operations that can be performed on 
qubits. They are represented by unitary matrices. 

Theorem 13 (Universal Gate Set): Any quantum operation on a finite number of qubits can be 
approximated to arbitrary accuracy using a finite sequence of gates from a universal gate set. 

Proof: This is a foundational result in quantum computation and follows from the Solovay-Kitaev 
theorem. 

Definition 24 (Quantum Circuit): A quantum circuit is a sequence of quantum gates and 
measurements applied to a set of qubits. 
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Lemma 8 (Expressivity of Quantum Circuits): The expressivity of a quantum circuit is related to 
its ability to approximate any unitary transformation on its input qubits, and increases with the 
number of gates and the circuit depth. 

Proof: This follows from the universal gate set theorem, as a deeper circuit or a circuit with more 
gates can implement a larger set of unitary transformations. 

Theorem 14 (Noise Robustness): Certain quantum error correction codes and fault-tolerant 
quantum computation schemes can protect quantum information even in the presence of noise, up to 
a certain noise threshold. 

Proof: This is a major result in the field of quantum error correction and follows from the theory of 
stabilizer codes and fault-tolerant quantum computation. 

Definition 25 (Quantum Phase Estimation (QPE)): Quantum Phase Estimation is a quantum 
algorithm to estimate the phase of an eigenvalue of a unitary operator. 

Let’s assume we have a unitary operator U with an eigenvector |ψ⟩ and a corresponding eigenvalue 
e^(2πiφ), where φ is unknown and our goal is to estimate φ. 

The basic steps in the algorithm involve: 

 1. Preparing a state |ψ⟩ which is an eigenvector of U. 
 2. Applying a sequence of controlled-U operations to a register of qubits initialized in 
the state |0⟩. 
 3. Performing an inverse Quantum Fourier Transform (QFT) on the resulting state. 
 4. Measuring the final state to obtain an estimate of φ. 

Formally, for t-qubits in the first register, 

 1. Start with the state |0⟩^(⨁t)|ψ⟩. 
 2. Apply Hadamard gates on the first register to get (1/√2^t) ∑_(k=0)^(2^t-1) |k⟩|ψ⟩. 
 3. Apply controlled-U operations to get (1/√2^t) ∑_(k=0)^(2^t-1) |k⟩U^k|ψ⟩ = (1/√2^t) 
∑_(k=0)^(2^t-1) e^(2πikφ)|k⟩|ψ⟩. 
 4. Apply the inverse QFT to the first register to obtain |φ⟩|ψ⟩, where |φ⟩ is an estimate 
of the binary representation of φ. 

Definition 26 (Quantum Fourier Transform (QFT)): QFT is a quantum analogue of the classical 
discrete Fourier transform. The QFT on an n-qubit state |x⟩ is defined as: 

QFT|x⟩ = (1/√2^n) ∑_(y=0)^(2^n-1) e^(2πixy/2^n)|y⟩ 

Theorem 15 (Efficiency of QPE): Quantum Phase Estimation can be performed in polynomial 
time in the number of qubits and the desired precision. 
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Proof: This follows from the efficiency of QFT and controlled-U operations, both of which can be 
implemented in polynomial time. To formalize the efficiency of Quantum Fourier Transform (QFT) 
and controlled-U operations, let's first lay down the definitions: Given an n-qubit state |x⟩ where x ∈ 
{0,1,...,2^n - 1}, the Quantum Fourier Transform maps |x⟩ to |Ψ_x⟩: 

|Ψ_x⟩ = (1/√(2^n)) ∑_y=0^(2^n-1) exp(2πixy/(2^n)) |y⟩ 

A Controlled-U operation for a single qubit unitary operation U is a 2-qubit operation which applies 
U to the target qubit only if the control qubit is |1⟩.  For an n-qubit quantum system, the time 
complexity of QFT can be described as follows: 

"QFT on n qubits can be implemented using O(n^2) basic quantum operations." 

By decomposing the QFT into Hadamard gates and controlled phase shift gates, it's clear that each 
qubit interacts with each other qubit at most once, leading to a quadratic number of operations. The 
efficiency of controlled-U operations for any unitary U is typically described as follows: 

For any single qubit unitary operation U, a Controlled-U operation can be implemented using a 
constant number of basic quantum operations. Single qubit unitary operations are already part of the 
universal gate set, and adding a control qubit can be done without increasing the number of required 
operations beyond a constant factor. 

Taken together, these propositions demonstrate that both QFT and controlled-U operations can be 
implemented efficiently in polynomial time. This fact is crucial for the efficiency of many quantum 
algorithms, including Shor's factoring algorithm and Quantum Phase Estimation. 

Ⅲ. Conclusion and Future Work 

This investigation has presented a unified framework for individual quantum machine learning 
models, grounded in the Schrödinger equation. We rigorously formulated the mathematical 
properties of quantum states and quantum systems, derived relevant theorems and corollaries, and 
detailed the implications for quantum kernels, error mitigation, and quantum computational 
complexity. 

Notably, our work has elucidated the intrinsic efficiency of quantum computations such as Quantum 
Fourier Transform (QFT) and controlled-U operations. These efficiencies have significant 
ramifications for quantum algorithms and their comparative complexity vis-à-vis classical 
counterparts, contributing to the broader field of quantum information processing. 

As we continue our work, several paths present themselves for further exploration: 
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 1. More Complex Quantum Systems: The study of more intricate quantum systems, 
like many-body systems, could yield more advanced machine learning models, potentially 
unlocking new applications and insights. 
 2. Quantum Error Correction: As we delve deeper into the domain of quantum error 
correction and fault-tolerant quantum computation, it will be imperative to derive more robust error 
correction codes, enhancing the reliability of quantum computations. 
 3. Quantum Algorithms: Given the efficiency of QFT and controlled-U operations, 
understanding their role in more quantum algorithms would provide further insights into the 
computational advantages of quantum machines. 
 4. Integration with Classical Machine Learning Models: It’s worthwhile to explore 
the hybridization of quantum and classical models, which might lead to more efficient and robust 
learning algorithms. 

By advancing these lines of inquiry, we hope to extend our understanding of quantum systems, their 
computational properties, and potential applications in machine learning, which in turn can 
contribute to the future of quantum information science and its real-world applications. 
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