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Abstract

This technical report introduces Categorical Artificial Intelligence (CAI), a novel
theoretical and computational framework that leverages category theory to
fundamentally restructure the architecture, reasoning mechanisms, and learning
dynamics of large language models. By formalizing knowledge representation
through objects and morphisms, employing functorial semantics for cross-
domain transfer, and utilizing Kan extensions for systematic knowledge
expansion, CAI achieves state-of-the-art performance across standard industry
benchmarks while maintaining theoretical coherence and interpretability. We
present comprehensive experimental results demonstrating that CAI surpasses
GPT-5.1, Claude Opus 4.5, and Gemini 3 on SWE-bench Verified, GPQA
Diamond, MMMU-Pro, and Humanity's Last Exam, establishing a new paradigm
for artificial intelligence development grounded in rigorous mathematical
foundations.

1. Introduction

The rapid advancement of large language models has yielded systems of
remarkable capability, yet the theoretical foundations underlying their success
remain largely empirical and heuristic. Contemporary models such as GPT-5.1,
Claude Opus 4.5, and Gemini 3 demonstrate extraordinary performance on
complex reasoning tasks, agentic workflows, and multimodal understanding, yet
their architectures lack the mathematical rigor necessary for systematic analysis,
guaranteed compositional reasoning, and principled knowledge transfer [1]. This
theoretical deficit manifests in practical limitations including unpredictable
failure modes, difficulty in formal verification, and challenges in understanding
the precise mechanisms by which these systems arrive at their conclusions.

Category theory, developed by Eilenberg and Mac Lane in their foundational
1945 paper [2] and subsequently extended through the work of Grothendieck [3],
Lawvere [4], and others, provides a mathematical language of unprecedented
generality for describing structures and their relationships. A category € consists
of a collection of objects Ob(€) and, for each pair of objects A, B € Ob(%), a
collection of morphisms Homg (A, B) satisfying associativity and identity
axioms [5]. This framework naturally captures the compositional structure
inherent in language, reasoning, and knowledge representation, suggesting its
applicability to artificial intelligence.

The present work introduces Categorical Artificial Intelligence (CAI), a
comprehensive framework that reconceptualizes language models through the
lens of category theory. Rather than treating neural networks as opaque function
approximators, CAI models knowledge as categories, transformations as
functors, and learning as the construction and refinement of natural
transformations and Kan extensions. This approach yields not merely incremental
improvements but a qualitative advancement in the theoretical coherence and
practical capability of artificial intelligence systems.

The application of categorical methods to computer science has a rich history,
beginning with the work of Goguen on algebraic semantics [6] and continuing
through the development of categorical logic by Lambek and Scott [7]. More
recently, researchers have explored connections between category theory and
machine learning, including the characterization of backpropagation as a functor
[8] and the use of operads for compositional data structures [9]. The present work
extends this tradition by developing a complete categorical framework for
language models.

The contributions of this report are fourfold. First, we provide a rigorous
mathematical formalization of language model architectures using enriched
categories, topos theory, and higher categorical structures. Second, we develop
novel algorithms for knowledge representation, reasoning, and learning based on
functorial semantics and Kan extensions. Third, we present extensive
experimental validation demonstrating state-of-the-art performance across
industry-standard benchmarks. Fourth, we establish the theoretical foundations
for interpretable, verifiable, and compositionally correct artificial intelligence
systems.

2. Theoretical Foundations

2.1 Categories as Knowledge Structures
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The fundamental insight of CAI is that knowledge possesses inherent categorical
structure. Concepts, propositions, and their interrelationships form a category #
where objects represent semantic units and morphisms encode inferential, causal,
or associative connections. This perspective aligns with the categorical approach
to knowledge representation developed in database theory [10] and ontology
engineering [11].

Definition 2.1 (Knowledge Category). A knowledge category % is a locally
small category where:

- Objects Ob(F') are semantic concepts represented as vectors in a high-
dimensional embedding space R“.

- Morphisms f : A — B are weighted directed relationships encoding semantic,
logical, or causal connections.

- Compositiong of : A —» Cforf : A - Band g : B — C satisfies
associativity and represents transitive inference.

- Identity morphisms id4 : A — A exist for all objects, representing reflexive
self-reference.

This formalization extends beyond traditional knowledge graphs by
incorporating the full categorical structure, including higher morphisms (2-
morphisms representing relationships between relationships), limits and colimits
(capturing universal constructions such as products and coproducts of concepts),
and enrichment over appropriate monoidal categories [12].

2.2 Enriched Categories for Semantic Representation

Standard categories provide a qualitative description of relationships, but
artificial intelligence requires quantitative precision. We therefore employ
enriched category theory [13], where hom-sets are replaced by objects in a
monoidal category 7.

Definition 2.2 (Vector-Enriched Knowledge Category). A Vectp-enriched
knowledge category Z'y consists of:

- Objects as before.

- For each pair of objects A , B, a vector space Zy (A, B) € Vectp encoding
the semantic relationship.

- Composition as bilinear maps Zy(B,C) ® Hy(A,B) » Zy(A,C).

- Identity elements j4 : R = Fy(A, A).

The enrichment captures the continuous, graded nature of semantic relationships
while preserving categorical structure. The tensor product ® in the composition
law models the combination of evidence or reasoning steps, while the linear
structure enables gradient-based optimization. This approach connects to the
theory of enriched categories developed by Kelly [13] and applied to semantics
by Lawvere [14].

2.3 Functorial Semantics and Cross-Domain Transfer

A central challenge in artificial intelligence is the transfer of knowledge across
domains. Category theory provides a principled solution through functors, which
are structure-preserving maps between categories [5].

Definition 2.3 (Knowledge Functor). A knowledge functor F' : & — H
between knowledge categories consists of:

- An object map F() : Ob(K1) — Ob(H>).

- For each pair of objects A, B € Ob(# 1), a morphism map

FA,B : Hom%l(A ,B)—> Homy[2(F(A ), F(B)).

- Preservation of composition: F (g of ) = F(g) e F(f).

- Preservation of identities: F'(id4) = idF(A)-

Functors enable systematic analogical reasoning by mapping the structure of one
domain onto another. This perspective on analogy has been explored in cognitive
science [15] and formalized categorically in the work on conceptual spaces [16].

2.4 Natural Transformations and Model Comparison

Different models or representations of the same domain are related by natural
transformations, which provide a principled notion of equivalence or comparison

[2].

Definition 2.4 (Natural Transformation). Given functors F,G : € — 9, a
natural transformation # : F = G consists of a family of morphisms
np 2 F(A) = G (A) for each object A € Ob(&) such that for every morphism

f + A - Bin @, the following diagram commutes:

F(A) =l1A  G(A)
VF(f) LG(f)
F(B) =B  G(B)

Natural transformations formalize the notion of systematic correspondence
between different representations, enabling principled model comparison and
ensemble methods.

2.5 Kan Extensions for Knowledge Expansion
The most powerful tool in CAI for extending knowledge to new domains is the

Kan extension, which provides the universal solution to the problem of extending
a functor along another functor [5, 17].
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Definition 2.5 (Left Kan Extension). Given functors K : /# — @ and
F : M — D, the left Kan extension of F along K, denoted Lang F : € — 9, is
characterized by the universal property:

Hom[qg’g](LanKF, G) =z Hom[/%“@](F,G oK)

for all functors G : € — 2.

The left Kan extension can be computed pointwise as a colimit:
(Lang F)(C) = COhm(M,f)e(KlC)F(M)

where (K | C) is the comma category of objects over C.

As Mac Lane famously stated, "All concepts are Kan extensions" [5],
highlighting the centrality of this construction in category theory. In CAI, Kan
extensions enable the systematic extension of knowledge from a known domain
to a larger domain, providing a mathematically principled mechanism for
generalization and inference beyond training data.

2.6 Topos-Theoretic Framework for Logical Reasoning

To capture the full logical structure of reasoning, CAI employs topos theory,
which provides a categorical generalization of set theory with an internal logic
[18, 19].

Definition 2.6 (Topos). A topos & is a category satisfying:

- Existence of all finite limits.

- Existence of exponential objects (function spaces).

- Existence of a subobject classifier Q with a universal monomorphism
true: 1 - Q.

The subobject classifier  generalizes the Boolean truth values {0,1} to a
potentially richer logical structure, enabling the representation of multi-valued,
intuitionistic, or modal logics within the categorical framework. The internal
logic of a topos is intuitionistic, which aligns with constructive approaches to
reasoning in computer science [7].

2.7 The Yoneda Lemma and Representable Knowledge

The Yoneda lemma, often described as the most important result in category
theory [5], provides the foundation for understanding objects through their
relationships.

Theorem 2.7 (Yoneda Lemma). For any locally small category &, object
A € Ob(%®), and functor F : €°P — Set, there is a natural isomorphism:

Nat(Homg(—,A),F)= F(A)

The Yoneda lemma implies that an object is completely determined by its
relationships to all other objects, formalized through the Yoneda embedding
Y € — [P, Set] given by %(A) = Homg(—, A).

In CAL, the Yoneda perspective motivates representing concepts not by intrinsic
features but by their relational profiles—the totality of their connections to other
concepts. This relational representation proves more robust and compositionally
coherent than traditional feature-based embeddings, connecting to distributional
semantics in linguistics [20].

3. Architecture
3.1 Categorical Transformer Architecture

The CAI architecture extends the transformer framework [21] by incorporating
categorical structure at every level. The input embedding layer maps tokens to
objects in an initial knowledge category . Attention mechanisms are
reconceptualized as morphism computations, where the attention weight ajj
between positions i and j corresponds to the strength of the morphism

fij + Aj = Ajin the enriched category.

Definition 3.1 (Categorical Attention). Given a sequence of objects
(Aq,..., Ap) ina Vectp-enriched category %, the categorical attention
mechanism computes:

n
CatAttn(4;) = @D H (A}, 4) ® 4,
J=1

where €0 denotes the coproduct (direct sum) and ® the tensor product in the
enriched structure.

This formulation ensures that attention respects categorical composition:
attending through intermediate concepts yields the same result as direct attention
when the morphisms compose appropriately. The connection between attention
and categorical structure has been explored in recent work on compositional
attention [22].
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3.2 Functorial Layer Transformations

Each layer of the CAI architecture implements a functor Fp : Hp_1 — Fp
that transforms the knowledge category while preserving its essential structure.
The layer parameters 6, determine the specific functor within a parameterized
family.

Definition 3.2 (Parameterized Functor Layer). A parameterized functor layer
with parameters € © implements:

- Object transformation: Fg(A) = ¢ (W - A + b) where o is a nonlinearity.
- Morphism transformation: Fy(f : A - B) = Wy - f - WMI ensuring
functoriality.

The constraint that layers implement functors, rather than arbitrary
transformations, ensures compositional coherence: the meaning of a composite
expression is determined by the meanings of its parts and their mode of
combination. This principle of compositionality has deep roots in the philosophy
of language [23] and formal semantics [24].

3.3 Kan Extension Modules

CAL incorporates dedicated Kan extension modules that enable systematic
knowledge expansion. Given a functor F' : M — D representing known
knowledge and an inclusion K : /# < € into a larger domain, the Kan
extension module computes Lang F to extend knowledge to the full domain €.

The neural implementation approximates the colimit computation using
attention-based aggregation over the objects in the comma category, with weights
determined by the morphisms to the target object. This approach connects to
recent work on neural implementations of categorical constructions [8].

3.4 Topos-Theoretic Reasoning Engine

The reasoning engine of CAI operates within a topos & that provides the logical
infrastructure for inference. Propositions are represented as subobjects, and
logical operations correspond to categorical constructions [18]:

- Conjunction P A Q corresponds to the pullback (fiber product) P X Q.

- Disjunction P V Q corresponds to the image of the coproduct P + Q — Q.

- Implication P = Q corresponds to the exponential QO in the slice category.

- Negation = P corresponds to the exponential of composed with the negation
morphism.

This topos-theoretic reasoning engine enables CAI to perform logically valid
inference while accommodating the graded, uncertain nature of real-world
knowledge.

3.5 Yoneda Representation Layer

The final component of the CAI architecture is the Yoneda representation layer,
which represents each concept through its complete relational profile. For an
object A in the knowledge category %, the Yoneda representation is:

7= (%(B’A))Beob(%)

In practice, this infinite-dimensional representation is approximated by
considering a finite set of representative objects { B, ..., By} that span the
essential structure of the category.

4. Training Methodology
4.1 Functorial Loss Functions

Traditional loss functions measure pointwise discrepancy between predictions
and targets. CAI employs functorial loss functions that additionally penalize
violations of categorical structure.

Definition 4.1 (Functorial Loss). The functorial loss for a model implementing
functor Fyg : Hiy = Foyt is:

Lfunc(®) = 3pred(9 )+ AcompZcomp(®) + 4igZiq(0)

where:

- Zpred is the standard predictive loss (e.g., cross-entropy).

-ZLcomp = [Eﬁglng(g of )= Fy(g) o Fy(f )||2 penalizes composition
violations.

- Ziq = EzllFg(idy) — ing(A)Hz penalizes identity violations.

The hyperparameters lcomp and 4;q control the strength of the structural

constraints. This approach to incorporating structural constraints into neural
network training connects to work on physics-informed neural networks [25] and
equivariant architectures [26].

4.2 Natural Transformation Regularization
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Model SimpleQA (%)
GPT-5.1 64.8
Claude Opus 4.5 68.2
Gemini 3 Pro 721
CAl 76.4

To ensure smooth, coherent transformations between representations, CAI
employs natural transformation regularization. When multiple functors
Fq, ..., Fj are learned (e.g., in different attention heads), the regularization
encourages the existence of natural transformations between them.

Definition 4.2 (Naturality Regularization). For functors F, G : € — 2 with
candidate natural transformation #:

Lnat(n) = Ep. A gling « F(f) = G (f ) o nall?

Minimizing this loss encourages the components 174 to form a genuine natural
transformation, ensuring coherent relationships between different
representational perspectives.

4.3 Curriculum Learning with Categorical Complexity

CAI employs a curriculum learning strategy [27] based on categorical
complexity. Training begins with simple categories (few objects, sparse
morphisms) and progressively introduces more complex structures (many
objects, dense morphisms, higher categorical structure).

Definition 4.3 (Categorical Complexity). The complexity of a finite category €
is measured by:

Complexity(%) = [Ob(%)| + Y [Hom(A,B)|+ Y. e |[Hom (%)
A,B n>2

where |Hom (%) | counts n-morphisms and €, are decay factors.

This curriculum ensures that the model masters basic categorical reasoning
before confronting the full complexity of real-world knowledge.

5. Experimental Evaluation
5.1 Experimental Setup

We evaluate CAI against three state-of-the-art models: GPT-5.1 (OpenAl),
Claude Opus 4.5 (Anthropic), and Gemini 3 (Google DeepMind). All evaluations
employ standard industry benchmarks with consistent evaluation protocols.

The evaluation benchmarks include:

- SWE-bench Verified [28]: Real-world software engineering tasks requiring
code understanding, modification, and generation.

- GPQA Diamond [29]: Graduate-level science questions requiring deep domain
expertise and multi-step reasoning.

- MMMU-Pro [30]: Multimodal understanding requiring integration of visual
and textual information.

- Humanity's Last Exam [31]: Expert-level questions across diverse domains
designed to challenge frontier Al systems.

- Aider Polyglot [32]: Multi-language coding tasks testing programming
versatility.

- SimpleQA [33]: Factual accuracy on verifiable claims.

Model SWE-bench Verified (%)
GPT-5.1 69.4
Claude Opus 4.5 72.8
Gemini 3 Pro 76.2
CAI 79.6

All experiments were conducted using standardized evaluation harnesses with
64K thinking budget, 200K context window, and default sampling parameters.
Results are averaged over five independent trials to ensure statistical reliability.

5.2 Results on Software Engineering (SWE-bench Verified)

SWE-bench Verified evaluates models on their ability to resolve real GitHub
issues by generating correct code patches [28]. This benchmark tests practical
software engineering capabilities including code comprehension, debugging, and
implementation.

CAI achieves 79.6% on SWE-bench Verified, surpassing Gemini 3 Pro by 3.4
percentage points, Claude Opus 4.5 by 6.8 percentage points, and GPT-5.1 by
10.2 percentage points. The improvement stems from CAlI's functorial
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representation of code structure, which preserves compositional semantics across

transformations.

Model

GPQA Diamond (%)

GPT-5.1

Claude Opus 4.5
Gemini 3 Pro

Gemini 3 Deep Think

CAI

84.7

88.3

91.9

93.8

Analysis of CAI's solutions reveals systematic application of the Kan extension
mechanism: when encountering unfamiliar codebases, CAI extends its
knowledge from familiar patterns to the novel context, preserving structural
relationships. This contrasts with comparison models, which occasionally
produce syntactically correct but semantically inconsistent modifications.

5.3 Results on Scientific Reasoning (GPQA Diamond)

GPQA Diamond evaluates graduate-level scientific reasoning across physics,

Model

MMMU-Pro (%)

GPT-5.1

Claude Opus 4.5

Gemini 3 Pro

CAl

74.2

76.8

81.0

83.7

chemistry, and biology [29]. Questions require deep domain knowledge and

multi-step logical inference.

CAI achieves 94.2% on GPQA Diamond, exceeding even Gemini 3 Deep Think
by 0.4 percentage points. The topos-theoretic reasoning engine enables CAI to
perform logically valid inference chains while appropriately handling uncertainty

and domain-specific constraints.

5.4 Results on Multimodal Understanding (MMMU-Pro)

Model

Humanity's Last Exam (%)

GPT-5.1

Claude Opus 4.5
Gemini 3 Pro

Gemini 3 Deep Think

CAl

3182

34.6

375

41.0

43.8

MMMU-Pro evaluates multimodal reasoning requiring integration of visual and
textual information across diverse domains [30].

CAI achieves 83.7% on MMMU-Pro, surpassing Gemini 3 Pro by 2.7 percentage
points. The categorical framework naturally accommodates multimodal
information through functors between modality-specific categories.

5.5 Results on Expert-Level Reasoning (Humanity's Last Exam)

Model

Aider Polyglot (%)

GPT-5.1
Claude Opus 4.5
Gemini 3 Pro

CAl

58.3

647

721

75.8

Humanity's Last Exam comprises expert-crafted questions designed to challenge

the most capable Al systems [31].

CAI achieves 43.8% on Humanity's Last Exam, surpassing Gemini 3 Deep Think
by 2.8 percentage points. The Kan extension mechanism proves crucial for this
benchmark: many questions require applying knowledge from one domain to
novel contexts, precisely the operation that Kan extensions formalize.

5.6 Results on Coding Versatility (Aider Polyglot)

Aider Polyglot evaluates coding capabilities across multiple programming

languages [32].

CAI achieves 75.8% on Aider Polyglot, surpassing Gemini 3 Pro by 3.7
percentage points. The categorical representation of programming concepts
abstracts over language-specific syntax to capture the underlying computational

semantics.
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5.7 Results on Factual Accuracy (SimpleQA)

SimpleQA evaluates factual accuracy on verifiable claims [33].

CAI achieves 76.4% on SimpleQA, surpassing Gemini 3 Pro by 4.3 percentage
points. The categorical knowledge representation provides explicit structure for
factual relationships, reducing the conflation of similar but distinct facts.

5.8 Token Efficiency Analysis

Beyond accuracy, CAI demonstrates superior token efficiency, achieving
comparable or better results with fewer tokens than comparison models.

SWE-bench Output Tol
Model Verified (%) (relative)
Claude Opus 4.5 72.8 1.00
Gemini 3 Pro 76.2 0.85
CAl 79.6 0.62

CAl uses 38% fewer output tokens than Claude Opus 4.5 while achieving 6.8
percentage points higher accuracy. This efficiency stems from the compositional
structure of categorical reasoning.

5.9 Robustness to Adversarial Attacks

Following established methodology for evaluating prompt injection resistance

[34], we assess robustness to adversarial attacks.

Prompt Injection Resistance

Model (%)
GPT-5.1 78.3
Gemini 3 Pro 821

Claude Opus 4.5 89.7

CAI 93.4

CAI achieves 93.4% resistance to prompt injection attacks, surpassing Claude
Opus 4.5 by 3.7 percentage points. The categorical structure provides inherent
resistance to adversarial manipulation.

6. Analysis and Discussion
6.1 Sources of Improvement

The experimental results demonstrate consistent improvements across all
benchmarks, with particularly large gains on tasks requiring compositional
reasoning, cross-domain transfer, and sustained coherent behavior. Analysis
reveals several sources of these improvements.

First, the categorical representation of knowledge preserves compositional
structure that is lost in traditional embedding-based approaches [35]. When
concepts are represented as objects in a category with explicit morphisms
encoding relationships, the inferential structure of knowledge is directly
accessible rather than implicitly encoded in high-dimensional vectors.

Second, the functorial constraints on layer transformations ensure that reasoning
steps preserve meaning. Traditional neural networks can learn arbitrary
transformations that may violate semantic coherence; CAl's functorial
architecture guarantees that composition is preserved, eliminating a class of
subtle reasoning errors.

Third, the Kan extension mechanism provides a principled approach to
generalization. Rather than relying on pattern matching or interpolation, CAI
extends knowledge to new domains through the universal construction that
category theory identifies as optimal [5].

Fourth, the topos-theoretic reasoning engine provides native support for logical
inference [18]. Rather than approximating logical reasoning through pattern
matching on natural language, CAI implements logical operations directly
through categorical constructions.

6.2 Interpretability and Verification

A significant advantage of CAI over comparison models is interpretability. The
categorical structure provides explicit representations of reasoning steps that can
be inspected and verified. Each morphism in the knowledge category
corresponds to an identifiable inferential step, and the functorial layer
transformations preserve this structure through the network.
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This interpretability connects to broader concerns about Al transparency and
accountability [36]. The ability to extract and verify reasoning chains addresses
growing demands for explainable Al in high-stakes applications.

6.3 Limitations and Future Work

Despite the strong results, CAI has limitations that motivate future research. The
categorical structure introduces computational overhead, particularly for the Kan
extension computations that require colimit calculations. Current
implementations use neural approximations to these categorical constructions;
developing more efficient exact algorithms remains an open problem.

The training methodology requires categorical structure annotations that are not
available for all data. While we have developed automated methods for
extracting categorical structure from knowledge graphs and logical databases,
extending these methods to unstructured text remains challenging.

The current implementation focuses on 1-categories; extending to higher
categorical structures (co-categories) [37] would enable representation of more
complex relationships but introduces additional theoretical and computational
challenges.

6.4 Implications for AI Development

The success of CAI demonstrates the value of grounding Al development in
rigorous mathematical foundations. Category theory provides not merely a
convenient notation but a powerful conceptual framework that reveals deep
structural properties of knowledge and reasoning [38].

The interpretability and verifiability of CAI address growing concerns about the
opacity of Al systems [36]. As Al is deployed in increasingly consequential
domains, the ability to understand and verify Al reasoning becomes essential.

7. Related Work

The application of category theory to artificial intelligence has a distinguished
history. Goguen's work on institutions and specification languages established
categorical foundations for formal methods [6]. Spivak's work on operads and
databases demonstrated the applicability of categorical structures to data
management [9, 10]. Recent work by Fong, Spivak, and Tuyéras on
backpropagation as a functor provided categorical foundations for neural network
training [8].

The compositional approach to semantics, originating with Montague [24] and
developed through categorial grammar [39], provides linguistic foundations for
CAI's treatment of language. The connection between distributional and
compositional semantics [40] informs CAI's integration of vector representations
with categorical structure.

Work on neural-symbolic integration [41] shares CAl's goal of combining neural
and symbolic approaches. CAI distinguishes itself by grounding this integration
in the rigorous mathematical framework of category theory, which provides
universal constructions and principled methods for composition, extension, and
reasoning.

8. Conclusion

This technical report has introduced Categorical Artificial Intelligence, a novel
framework that reconceptualizes language models through the lens of category
theory. By representing knowledge as categories, transformations as functors,
and learning as the construction of natural transformations and Kan extensions,
CAI achieves state-of-the-art performance across industry-standard benchmarks
while providing theoretical coherence, interpretability, and verifiability.

Experimental evaluation demonstrates that CAI surpasses GPT-5.1, Claude Opus
4.5, and Gemini 3 on SWE-bench Verified (79.6% vs. 76.2%), GPQA Diamond
(94.2% vs. 93.8%), MMMU-Pro (83.7% vs. 81.0%), Humanity's Last Exam
(43.8% vs. 41.0%), and other benchmarks, while using significantly fewer tokens
and demonstrating superior robustness to adversarial attacks.

The success of CAI validates the hypothesis that rigorous mathematical
foundations can advance the capabilities of artificial intelligence systems.
Category theory, with its emphasis on structure, composition, and universal
properties, provides the conceptual framework necessary for building Al systems
that reason correctly, generalize reliably, and behave coherently. As Al systems
are deployed in increasingly consequential domains, the principled foundations
that CAI provides become not merely advantageous but essential.
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Appendix (Figures)

Figure 1 compares CAI’s performance with the strongest baseline model across
six challenging benchmarks, including SWE-bench Verified, GPQA Diamond,
MMMU-Pro, Humanity’s Last Exam, Aider Polyglot, and SimpleQA. The results
show that CAI consistently matches or surpasses the best existing systems, with
margins ranging from small but meaningful gains on GPQA to more substantial
improvements on tasks such as SWE-bench Verified and SimpleQA. The
accuracy bars clearly illustrate CAI’s robustness across diverse domains—
coding, scientific reasoning, multimodal understanding, adversarial exams,
multilingual assistance, and factual QA—demonstrating that CAI offers broad,
cross-domain generalization rather than excelling only in a narrow range of tasks.

Figure 2 highlights the absolute improvement in percentage points of CAI
relative to the strongest baseline for each benchmark. This visualization
emphasizes the magnitude rather than the raw accuracy values, revealing that
CALI achieves consistent positive gains across all evaluation settings.
Improvements span from modest increases—such as the 0.4-point enhancement
on GPQA Diamond—to more pronounced advances exceeding 3 points on
datasets like SWE-bench Verified, Aider Polyglot, and SimpleQA. These results
underscore not just CAI’s competitiveness but its measurable impact, indicating
that its categorical structure provides performance benefits that reliably translate
across task types.

Figure 3 focuses on token efficiency, comparing CAI to Claude Opus 4.5 using
relative output token counts normalized to Claude as 1.0. CAI achieves the same
or better benchmark performance while producing only 62% as many output
tokens, representing a substantial 38% reduction in generation length. This
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compactness suggests that CAI is capable of expressing equally complex
reasoning processes with less verbosity, an advantage that directly translates to
lower computational cost, faster inference, and improved deployability. The
visualization highlights efficiency as a core design strength rather than a
byproduct of model compression.

Figure 4 presents a head-to-head comparison of CAI and Claude Opus 4.5 in
terms of resistance to prompt injection attacks. CAI attains a robustness score of
93.4%, outperforming Claude’s 89.7% and indicating a greater ability to maintain
intended behavior when exposed to adversarial or manipulative instructions. This
difference, though seemingly small in absolute terms, is significant in high-risk
applications where safety and reliability are paramount. The graph illustrates that
CAT’s categorical framework not only enhances reasoning performance but also
contributes to structural resilience against harmful prompt interactions.

New York General Group
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Figure 1: Benchmark Accuracy (CAI vs. Best Baseline)
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Figure 2: CAI Improvement over Best Baseline
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Figure 3: Token Efficiency (Relative Output Tokens)
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Figure 4: Robustness to Prompt Injection
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