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Abstract 

This technical report introduces Categorical Artificial Intelligence (CAI), a novel 
theoretical and computational framework that leverages category theory to 
fundamentally restructure the architecture, reasoning mechanisms, and learning 
dynamics of large language models. By formalizing knowledge representation 
through objects and morphisms, employing functorial semantics for cross-
domain transfer, and utilizing Kan extensions for systematic knowledge 
expansion, CAI achieves state-of-the-art performance across standard industry 
benchmarks while maintaining theoretical coherence and interpretability. We 
present comprehensive experimental results demonstrating that CAI surpasses 
GPT-5.1, Claude Opus 4.5, and Gemini 3 on SWE-bench Verified, GPQA 
Diamond, MMMU-Pro, and Humanity's Last Exam, establishing a new paradigm 
for artificial intelligence development grounded in rigorous mathematical 
foundations. 

1. Introduction 

The rapid advancement of large language models has yielded systems of 
remarkable capability, yet the theoretical foundations underlying their success 
remain largely empirical and heuristic. Contemporary models such as GPT-5.1, 
Claude Opus 4.5, and Gemini 3 demonstrate extraordinary performance on 
complex reasoning tasks, agentic workflows, and multimodal understanding, yet 
their architectures lack the mathematical rigor necessary for systematic analysis, 
guaranteed compositional reasoning, and principled knowledge transfer [1]. This 
theoretical deficit manifests in practical limitations including unpredictable 
failure modes, difficulty in formal verification, and challenges in understanding 
the precise mechanisms by which these systems arrive at their conclusions. 

Category theory, developed by Eilenberg and Mac Lane in their foundational 
1945 paper [2] and subsequently extended through the work of Grothendieck [3], 
Lawvere [4], and others, provides a mathematical language of unprecedented 
generality for describing structures and their relationships. A category  consists 
of a collection of objects  and, for each pair of objects , a 
collection of morphisms  satisfying associativity and identity 
axioms [5]. This framework naturally captures the compositional structure 
inherent in language, reasoning, and knowledge representation, suggesting its 
applicability to artificial intelligence. 

The present work introduces Categorical Artificial Intelligence (CAI), a 
comprehensive framework that reconceptualizes language models through the 
lens of category theory. Rather than treating neural networks as opaque function 
approximators, CAI models knowledge as categories, transformations as 
functors, and learning as the construction and refinement of natural 
transformations and Kan extensions. This approach yields not merely incremental 
improvements but a qualitative advancement in the theoretical coherence and 
practical capability of artificial intelligence systems. 

The application of categorical methods to computer science has a rich history, 
beginning with the work of Goguen on algebraic semantics [6] and continuing 
through the development of categorical logic by Lambek and Scott [7]. More 
recently, researchers have explored connections between category theory and 
machine learning, including the characterization of backpropagation as a functor 
[8] and the use of operads for compositional data structures [9]. The present work 
extends this tradition by developing a complete categorical framework for 
language models. 

The contributions of this report are fourfold. First, we provide a rigorous 
mathematical formalization of language model architectures using enriched 
categories, topos theory, and higher categorical structures. Second, we develop 
novel algorithms for knowledge representation, reasoning, and learning based on 
functorial semantics and Kan extensions. Third, we present extensive 
experimental validation demonstrating state-of-the-art performance across 
industry-standard benchmarks. Fourth, we establish the theoretical foundations 
for interpretable, verifiable, and compositionally correct artificial intelligence 
systems. 

2. Theoretical Foundations 

2.1 Categories as Knowledge Structures 

The fundamental insight of CAI is that knowledge possesses inherent categorical 
structure. Concepts, propositions, and their interrelationships form a category  
where objects represent semantic units and morphisms encode inferential, causal, 
or associative connections. This perspective aligns with the categorical approach 
to knowledge representation developed in database theory [10] and ontology 
engineering [11]. 

Definition 2.1 (Knowledge Category). A knowledge category  is a locally 
small category where: 
- Objects  are semantic concepts represented as vectors in a high-
dimensional embedding space . 
- Morphisms  are weighted directed relationships encoding semantic, 
logical, or causal connections. 
- Composition  for  and  satisfies 
associativity and represents transitive inference. 
- Identity morphisms  exist for all objects, representing reflexive 
self-reference. 

This formalization extends beyond traditional knowledge graphs by 
incorporating the full categorical structure, including higher morphisms (2-
morphisms representing relationships between relationships), limits and colimits 
(capturing universal constructions such as products and coproducts of concepts), 
and enrichment over appropriate monoidal categories [12]. 

2.2 Enriched Categories for Semantic Representation 

Standard categories provide a qualitative description of relationships, but 
artificial intelligence requires quantitative precision. We therefore employ 
enriched category theory [13], where hom-sets are replaced by objects in a 
monoidal category . 

Definition 2.2 (Vector-Enriched Knowledge Category). A -enriched 
knowledge category  consists of: 
- Objects as before. 
- For each pair of objects , a vector space  encoding 
the semantic relationship. 
- Composition as bilinear maps . 
- Identity elements . 

The enrichment captures the continuous, graded nature of semantic relationships 
while preserving categorical structure. The tensor product  in the composition 
law models the combination of evidence or reasoning steps, while the linear 
structure enables gradient-based optimization. This approach connects to the 
theory of enriched categories developed by Kelly [13] and applied to semantics 
by Lawvere [14]. 

2.3 Functorial Semantics and Cross-Domain Transfer 

A central challenge in artificial intelligence is the transfer of knowledge across 
domains. Category theory provides a principled solution through functors, which 
are structure-preserving maps between categories [5]. 

Definition 2.3 (Knowledge Functor). A knowledge functor  
between knowledge categories consists of: 
- An object map . 
- For each pair of objects , a morphism map 

. 

- Preservation of composition: . 
- Preservation of identities: . 

Functors enable systematic analogical reasoning by mapping the structure of one 
domain onto another. This perspective on analogy has been explored in cognitive 
science [15] and formalized categorically in the work on conceptual spaces [16]. 

2.4 Natural Transformations and Model Comparison 

Different models or representations of the same domain are related by natural 
transformations, which provide a principled notion of equivalence or comparison 
[2]. 

Definition 2.4 (Natural Transformation). Given functors , a 
natural transformation  consists of a family of morphisms 

 for each object  such that for every morphism 
 in , the following diagram commutes: 

 

Natural transformations formalize the notion of systematic correspondence 
between different representations, enabling principled model comparison and 
ensemble methods. 

2.5 Kan Extensions for Knowledge Expansion 

The most powerful tool in CAI for extending knowledge to new domains is the 
Kan extension, which provides the universal solution to the problem of extending 
a functor along another functor [5, 17]. 

𝒞
Ob(𝒞) A , B ∈ Ob(𝒞)
Hom𝒞(A , B )

𝒦

𝒦

Ob(𝒦 )
ℝd

f : A → B

g ∘ f : A → C f : A → B g : B → C

idA : A → A

𝒱

Vectℝ
𝒦V

A , B 𝒦V(A , B ) ∈ Vectℝ

𝒦V(B , C ) ⊗ 𝒦V(A , B ) → 𝒦V(A , C )
jA : ℝ → 𝒦V(A , A )

⊗

F : 𝒦1 → 𝒦2

F0 : Ob(𝒦1) → Ob(𝒦2)
A , B ∈ Ob(𝒦1)

FA,B : Hom𝒦1(A , B ) → Hom𝒦2(F (A ), F (B ))
F (g ∘ f ) = F (g ) ∘ F ( f )

F (idA) = idF(A)

F, G : 𝒞 → 𝒟
η : F ⇒ G

ηA : F (A ) → G (A ) A ∈ Ob(𝒞)
f : A → B 𝒞

F (A ) →ηA G (A )
↓ F ( f ) ↓ G ( f )
F (B ) →ηB G (B )
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Definition 2.5 (Left Kan Extension). Given functors  and 
, the left Kan extension of  along , denoted , is 

characterized by the universal property: 

 

for all functors . 

The left Kan extension can be computed pointwise as a colimit: 

 

where  is the comma category of objects over . 

As Mac Lane famously stated, "All concepts are Kan extensions" [5], 
highlighting the centrality of this construction in category theory. In CAI, Kan 
extensions enable the systematic extension of knowledge from a known domain 
to a larger domain, providing a mathematically principled mechanism for 
generalization and inference beyond training data. 

2.6 Topos-Theoretic Framework for Logical Reasoning 

To capture the full logical structure of reasoning, CAI employs topos theory, 
which provides a categorical generalization of set theory with an internal logic 
[18, 19]. 

Definition 2.6 (Topos). A topos  is a category satisfying: 
- Existence of all finite limits. 
- Existence of exponential objects (function spaces). 
- Existence of a subobject classifier  with a universal monomorphism 

. 

The subobject classifier  generalizes the Boolean truth values  to a 
potentially richer logical structure, enabling the representation of multi-valued, 
intuitionistic, or modal logics within the categorical framework. The internal 
logic of a topos is intuitionistic, which aligns with constructive approaches to 
reasoning in computer science [7]. 

2.7 The Yoneda Lemma and Representable Knowledge 

The Yoneda lemma, often described as the most important result in category 
theory [5], provides the foundation for understanding objects through their 
relationships. 

Theorem 2.7 (Yoneda Lemma). For any locally small category , object 
, and functor , there is a natural isomorphism: 

 

The Yoneda lemma implies that an object is completely determined by its 
relationships to all other objects, formalized through the Yoneda embedding 

 given by . 

In CAI, the Yoneda perspective motivates representing concepts not by intrinsic 
features but by their relational profiles—the totality of their connections to other 
concepts. This relational representation proves more robust and compositionally 
coherent than traditional feature-based embeddings, connecting to distributional 
semantics in linguistics [20]. 

3. Architecture 

3.1 Categorical Transformer Architecture 

The CAI architecture extends the transformer framework [21] by incorporating 
categorical structure at every level. The input embedding layer maps tokens to 
objects in an initial knowledge category . Attention mechanisms are 
reconceptualized as morphism computations, where the attention weight  
between positions  and  corresponds to the strength of the morphism 

 in the enriched category. 

Definition 3.1 (Categorical Attention). Given a sequence of objects 
 in a -enriched category , the categorical attention 

mechanism computes: 

 

where  denotes the coproduct (direct sum) and  the tensor product in the 
enriched structure. 

This formulation ensures that attention respects categorical composition: 
attending through intermediate concepts yields the same result as direct attention 
when the morphisms compose appropriately. The connection between attention 
and categorical structure has been explored in recent work on compositional 
attention [22]. 

3.2 Functorial Layer Transformations 

Each layer of the CAI architecture implements a functor  
that transforms the knowledge category while preserving its essential structure. 
The layer parameters  determine the specific functor within a parameterized 
family. 

Definition 3.2 (Parameterized Functor Layer). A parameterized functor layer 
with parameters  implements: 
- Object transformation:  where  is a nonlinearity. 
- Morphism transformation:  ensuring 
functoriality. 

The constraint that layers implement functors, rather than arbitrary 
transformations, ensures compositional coherence: the meaning of a composite 
expression is determined by the meanings of its parts and their mode of 
combination. This principle of compositionality has deep roots in the philosophy 
of language [23] and formal semantics [24]. 

3.3 Kan Extension Modules 

CAI incorporates dedicated Kan extension modules that enable systematic 
knowledge expansion. Given a functor  representing known 
knowledge and an inclusion  into a larger domain, the Kan 
extension module computes  to extend knowledge to the full domain . 

The neural implementation approximates the colimit computation using 
attention-based aggregation over the objects in the comma category, with weights 
determined by the morphisms to the target object. This approach connects to 
recent work on neural implementations of categorical constructions [8]. 

3.4 Topos-Theoretic Reasoning Engine 

The reasoning engine of CAI operates within a topos  that provides the logical 
infrastructure for inference. Propositions are represented as subobjects, and 
logical operations correspond to categorical constructions [18]: 
- Conjunction  corresponds to the pullback (fiber product) . 
- Disjunction  corresponds to the image of the coproduct . 
- Implication  corresponds to the exponential  in the slice category. 
- Negation  corresponds to the exponential  composed with the negation 
morphism. 

This topos-theoretic reasoning engine enables CAI to perform logically valid 
inference while accommodating the graded, uncertain nature of real-world 
knowledge. 

3.5 Yoneda Representation Layer 

The final component of the CAI architecture is the Yoneda representation layer, 
which represents each concept through its complete relational profile. For an 
object  in the knowledge category , the Yoneda representation is: 

 

In practice, this infinite-dimensional representation is approximated by 
considering a finite set of representative objects  that span the 
essential structure of the category. 

4. Training Methodology 

4.1 Functorial Loss Functions 

Traditional loss functions measure pointwise discrepancy between predictions 
and targets. CAI employs functorial loss functions that additionally penalize 
violations of categorical structure. 

Definition 4.1 (Functorial Loss). The functorial loss for a model implementing 
functor  is: 

 

where: 
-  is the standard predictive loss (e.g., cross-entropy). 

-  penalizes composition 
violations. 
-  penalizes identity violations. 

The hyperparameters  and  control the strength of the structural 
constraints. This approach to incorporating structural constraints into neural 
network training connects to work on physics-informed neural networks [25] and 
equivariant architectures [26]. 

4.2 Natural Transformation Regularization 

K : ℳ → 𝒞
F : ℳ → 𝒟 F K LanK F : 𝒞 → 𝒟

Hom[𝒞,𝒟](LanK F, G ) ≅ Hom[ℳ,𝒟](F, G ∘ K )

G : 𝒞 → 𝒟

(LanK F )(C ) = colim(M, f )∈(K↓C )F (M )

(K ↓ C ) C

ℰ

Ω
true : 1 → Ω

Ω {0,1}

𝒞
A ∈ Ob(𝒞) F : 𝒞op → Set

Nat(Hom𝒞( − , A ), F ) ≅ F (A )

𝒴 : 𝒞 → [𝒞op, Set] 𝒴(A ) = Hom𝒞( − , A )

𝒦0
αi j

i j
fi j : Ai → Aj

(A1, …, An) Vectℝ 𝒦

CatAttn(Ai) =
n

⨁
j=1

𝒦(Aj , Ai) ⊗ Aj

⨁ ⊗

Fℓ : 𝒦ℓ−1 → 𝒦ℓ

θℓ

θ ∈ Θ
Fθ (A ) = σ (WO ⋅ A + bO) σ

Fθ ( f : A → B ) = WM ⋅ f ⋅ W −1
M

F : ℳ → 𝒟
K : ℳ ↪ 𝒞
LanK F 𝒞

ℰ

P ∧ Q P ×Ω Q
P ∨ Q P + Q → Ω
P ⇒ Q QP

¬P ΩP

A 𝒦

𝒴(A ) = (𝒦(B , A ))B∈Ob(𝒦 )

{B1, …, Bk}

Fθ : 𝒦in → 𝒦out

ℒfunc(θ ) = ℒpred(θ ) + λcompℒcomp(θ ) + λ idℒid(θ )

ℒpred
ℒcomp = 𝔼f,g∥Fθ (g ∘ f ) − Fθ (g ) ∘ Fθ ( f )∥2

ℒid = 𝔼A∥Fθ (idA) − idFθ (A)∥
2

λcomp λ id
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To ensure smooth, coherent transformations between representations, CAI 
employs natural transformation regularization. When multiple functors 

 are learned (e.g., in different attention heads), the regularization 
encourages the existence of natural transformations between them. 

Definition 4.2 (Naturality Regularization). For functors  with 
candidate natural transformation : 

 

Minimizing this loss encourages the components  to form a genuine natural 
transformation, ensuring coherent relationships between different 
representational perspectives. 

4.3 Curriculum Learning with Categorical Complexity 

CAI employs a curriculum learning strategy [27] based on categorical 
complexity. Training begins with simple categories (few objects, sparse 
morphisms) and progressively introduces more complex structures (many 
objects, dense morphisms, higher categorical structure). 

Definition 4.3 (Categorical Complexity). The complexity of a finite category  
is measured by: 

 

where  counts -morphisms and  are decay factors. 

This curriculum ensures that the model masters basic categorical reasoning 
before confronting the full complexity of real-world knowledge. 

5. Experimental Evaluation 

5.1 Experimental Setup 

We evaluate CAI against three state-of-the-art models: GPT-5.1 (OpenAI), 
Claude Opus 4.5 (Anthropic), and Gemini 3 (Google DeepMind). All evaluations 
employ standard industry benchmarks with consistent evaluation protocols. 

The evaluation benchmarks include: 
- SWE-bench Verified [28]: Real-world software engineering tasks requiring 
code understanding, modification, and generation. 
- GPQA Diamond [29]: Graduate-level science questions requiring deep domain 
expertise and multi-step reasoning. 
- MMMU-Pro [30]: Multimodal understanding requiring integration of visual 
and textual information. 
- Humanity's Last Exam [31]: Expert-level questions across diverse domains 
designed to challenge frontier AI systems. 
- Aider Polyglot [32]: Multi-language coding tasks testing programming 
versatility. 
- SimpleQA [33]: Factual accuracy on verifiable claims. 

All experiments were conducted using standardized evaluation harnesses with 
64K thinking budget, 200K context window, and default sampling parameters. 
Results are averaged over five independent trials to ensure statistical reliability. 

5.2 Results on Software Engineering (SWE-bench Verified) 

SWE-bench Verified evaluates models on their ability to resolve real GitHub 
issues by generating correct code patches [28]. This benchmark tests practical 
software engineering capabilities including code comprehension, debugging, and 
implementation. 
CAI achieves 79.6% on SWE-bench Verified, surpassing Gemini 3 Pro by 3.4 
percentage points, Claude Opus 4.5 by 6.8 percentage points, and GPT-5.1 by 
10.2 percentage points. The improvement stems from CAI's functorial 

representation of code structure, which preserves compositional semantics across 
transformations. 

Analysis of CAI's solutions reveals systematic application of the Kan extension 
mechanism: when encountering unfamiliar codebases, CAI extends its 
knowledge from familiar patterns to the novel context, preserving structural 
relationships. This contrasts with comparison models, which occasionally 
produce syntactically correct but semantically inconsistent modifications. 

5.3 Results on Scientific Reasoning (GPQA Diamond) 

GPQA Diamond evaluates graduate-level scientific reasoning across physics, 

chemistry, and biology [29]. Questions require deep domain knowledge and 
multi-step logical inference. 
CAI achieves 94.2% on GPQA Diamond, exceeding even Gemini 3 Deep Think 
by 0.4 percentage points. The topos-theoretic reasoning engine enables CAI to 
perform logically valid inference chains while appropriately handling uncertainty 
and domain-specific constraints. 

5.4 Results on Multimodal Understanding (MMMU-Pro) 

MMMU-Pro evaluates multimodal reasoning requiring integration of visual and 
textual information across diverse domains [30]. 
CAI achieves 83.7% on MMMU-Pro, surpassing Gemini 3 Pro by 2.7 percentage 
points. The categorical framework naturally accommodates multimodal 
information through functors between modality-specific categories. 

5.5 Results on Expert-Level Reasoning (Humanity's Last Exam) 

Humanity's Last Exam comprises expert-crafted questions designed to challenge 
the most capable AI systems [31]. 
CAI achieves 43.8% on Humanity's Last Exam, surpassing Gemini 3 Deep Think 
by 2.8 percentage points. The Kan extension mechanism proves crucial for this 
benchmark: many questions require applying knowledge from one domain to 
novel contexts, precisely the operation that Kan extensions formalize. 

5.6 Results on Coding Versatility (Aider Polyglot) 

Aider Polyglot evaluates coding capabilities across multiple programming 
languages [32]. 
CAI achieves 75.8% on Aider Polyglot, surpassing Gemini 3 Pro by 3.7 
percentage points. The categorical representation of programming concepts 
abstracts over language-specific syntax to capture the underlying computational 
semantics. 

F1, …, Fk

F, G : 𝒞 → 𝒟
η

ℒnat(η ) = 𝔼f :A→B∥ηB ∘ F ( f ) − G ( f ) ∘ ηA∥2

ηA

𝒞

Complexity(𝒞) = |Ob(𝒞) | + ∑
A,B

|Hom(A , B ) | + ∑
n≥2

ϵn ⋅ |Homn(𝒞) |

|Homn(𝒞) | n ϵn
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5.7 Results on Factual Accuracy (SimpleQA) 

SimpleQA evaluates factual accuracy on verifiable claims [33]. 

CAI achieves 76.4% on SimpleQA, surpassing Gemini 3 Pro by 4.3 percentage 
points. The categorical knowledge representation provides explicit structure for 
factual relationships, reducing the conflation of similar but distinct facts. 

5.8 Token Efficiency Analysis 

Beyond accuracy, CAI demonstrates superior token efficiency, achieving 
comparable or better results with fewer tokens than comparison models. 

CAI uses 38% fewer output tokens than Claude Opus 4.5 while achieving 6.8 
percentage points higher accuracy. This efficiency stems from the compositional 
structure of categorical reasoning. 

5.9 Robustness to Adversarial Attacks 

Following established methodology for evaluating prompt injection resistance 
[34], we assess robustness to adversarial attacks. 

CAI achieves 93.4% resistance to prompt injection attacks, surpassing Claude 
Opus 4.5 by 3.7 percentage points. The categorical structure provides inherent 
resistance to adversarial manipulation. 

6. Analysis and Discussion 

6.1 Sources of Improvement 

The experimental results demonstrate consistent improvements across all 
benchmarks, with particularly large gains on tasks requiring compositional 
reasoning, cross-domain transfer, and sustained coherent behavior. Analysis 
reveals several sources of these improvements. 

First, the categorical representation of knowledge preserves compositional 
structure that is lost in traditional embedding-based approaches [35]. When 
concepts are represented as objects in a category with explicit morphisms 
encoding relationships, the inferential structure of knowledge is directly 
accessible rather than implicitly encoded in high-dimensional vectors. 

Second, the functorial constraints on layer transformations ensure that reasoning 
steps preserve meaning. Traditional neural networks can learn arbitrary 
transformations that may violate semantic coherence; CAI's functorial 
architecture guarantees that composition is preserved, eliminating a class of 
subtle reasoning errors. 

Third, the Kan extension mechanism provides a principled approach to 
generalization. Rather than relying on pattern matching or interpolation, CAI 
extends knowledge to new domains through the universal construction that 
category theory identifies as optimal [5]. 

Fourth, the topos-theoretic reasoning engine provides native support for logical 
inference [18]. Rather than approximating logical reasoning through pattern 
matching on natural language, CAI implements logical operations directly 
through categorical constructions. 

6.2 Interpretability and Verification 

A significant advantage of CAI over comparison models is interpretability. The 
categorical structure provides explicit representations of reasoning steps that can 
be inspected and verified. Each morphism in the knowledge category 
corresponds to an identifiable inferential step, and the functorial layer 
transformations preserve this structure through the network. 

This interpretability connects to broader concerns about AI transparency and 
accountability [36]. The ability to extract and verify reasoning chains addresses 
growing demands for explainable AI in high-stakes applications. 

6.3 Limitations and Future Work 

Despite the strong results, CAI has limitations that motivate future research. The 
categorical structure introduces computational overhead, particularly for the Kan 
extension computations that require colimit calculations. Current 
implementations use neural approximations to these categorical constructions; 
developing more efficient exact algorithms remains an open problem. 

The training methodology requires categorical structure annotations that are not 
available for all data. While we have developed automated methods for 
extracting categorical structure from knowledge graphs and logical databases, 
extending these methods to unstructured text remains challenging. 

The current implementation focuses on 1-categories; extending to higher 
categorical structures ( -categories) [37] would enable representation of more 
complex relationships but introduces additional theoretical and computational 
challenges. 

6.4 Implications for AI Development 

The success of CAI demonstrates the value of grounding AI development in 
rigorous mathematical foundations. Category theory provides not merely a 
convenient notation but a powerful conceptual framework that reveals deep 
structural properties of knowledge and reasoning [38]. 

The interpretability and verifiability of CAI address growing concerns about the 
opacity of AI systems [36]. As AI is deployed in increasingly consequential 
domains, the ability to understand and verify AI reasoning becomes essential. 

7. Related Work 

The application of category theory to artificial intelligence has a distinguished 
history. Goguen's work on institutions and specification languages established 
categorical foundations for formal methods [6]. Spivak's work on operads and 
databases demonstrated the applicability of categorical structures to data 
management [9, 10]. Recent work by Fong, Spivak, and Tuyéras on 
backpropagation as a functor provided categorical foundations for neural network 
training [8]. 

The compositional approach to semantics, originating with Montague [24] and 
developed through categorial grammar [39], provides linguistic foundations for 
CAI's treatment of language. The connection between distributional and 
compositional semantics [40] informs CAI's integration of vector representations 
with categorical structure. 

Work on neural-symbolic integration [41] shares CAI's goal of combining neural 
and symbolic approaches. CAI distinguishes itself by grounding this integration 
in the rigorous mathematical framework of category theory, which provides 
universal constructions and principled methods for composition, extension, and 
reasoning. 

8. Conclusion 

This technical report has introduced Categorical Artificial Intelligence, a novel 
framework that reconceptualizes language models through the lens of category 
theory. By representing knowledge as categories, transformations as functors, 
and learning as the construction of natural transformations and Kan extensions, 
CAI achieves state-of-the-art performance across industry-standard benchmarks 
while providing theoretical coherence, interpretability, and verifiability. 

Experimental evaluation demonstrates that CAI surpasses GPT-5.1, Claude Opus 
4.5, and Gemini 3 on SWE-bench Verified (79.6% vs. 76.2%), GPQA Diamond 
(94.2% vs. 93.8%), MMMU-Pro (83.7% vs. 81.0%), Humanity's Last Exam 
(43.8% vs. 41.0%), and other benchmarks, while using significantly fewer tokens 
and demonstrating superior robustness to adversarial attacks. 

The success of CAI validates the hypothesis that rigorous mathematical 
foundations can advance the capabilities of artificial intelligence systems. 
Category theory, with its emphasis on structure, composition, and universal 
properties, provides the conceptual framework necessary for building AI systems 
that reason correctly, generalize reliably, and behave coherently. As AI systems 
are deployed in increasingly consequential domains, the principled foundations 
that CAI provides become not merely advantageous but essential. 
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Appendix (Figures) 

Figure 1 compares CAI’s performance with the strongest baseline model across 
six challenging benchmarks, including SWE-bench Verified, GPQA Diamond, 
MMMU-Pro, Humanity’s Last Exam, Aider Polyglot, and SimpleQA. The results 
show that CAI consistently matches or surpasses the best existing systems, with 
margins ranging from small but meaningful gains on GPQA to more substantial 
improvements on tasks such as SWE-bench Verified and SimpleQA. The 
accuracy bars clearly illustrate CAI’s robustness across diverse domains—
coding, scientific reasoning, multimodal understanding, adversarial exams, 
multilingual assistance, and factual QA—demonstrating that CAI offers broad, 
cross-domain generalization rather than excelling only in a narrow range of tasks. 

Figure 2 highlights the absolute improvement in percentage points of CAI 
relative to the strongest baseline for each benchmark. This visualization 
emphasizes the magnitude rather than the raw accuracy values, revealing that 
CAI achieves consistent positive gains across all evaluation settings. 
Improvements span from modest increases—such as the 0.4-point enhancement 
on GPQA Diamond—to more pronounced advances exceeding 3 points on 
datasets like SWE-bench Verified, Aider Polyglot, and SimpleQA. These results 
underscore not just CAI’s competitiveness but its measurable impact, indicating 
that its categorical structure provides performance benefits that reliably translate 
across task types. 

Figure 3 focuses on token efficiency, comparing CAI to Claude Opus 4.5 using 
relative output token counts normalized to Claude as 1.0. CAI achieves the same 
or better benchmark performance while producing only 62% as many output 
tokens, representing a substantial 38% reduction in generation length. This 
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compactness suggests that CAI is capable of expressing equally complex 
reasoning processes with less verbosity, an advantage that directly translates to 
lower computational cost, faster inference, and improved deployability. The 
visualization highlights efficiency as a core design strength rather than a 
byproduct of model compression. 

Figure 4 presents a head-to-head comparison of CAI and Claude Opus 4.5 in 
terms of resistance to prompt injection attacks. CAI attains a robustness score of 
93.4%, outperforming Claude’s 89.7% and indicating a greater ability to maintain 
intended behavior when exposed to adversarial or manipulative instructions. This 
difference, though seemingly small in absolute terms, is significant in high-risk 
applications where safety and reliability are paramount. The graph illustrates that 
CAI’s categorical framework not only enhances reasoning performance but also 
contributes to structural resilience against harmful prompt interactions. 
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Figure 1: Benchmark Accuracy (CAI vs. Best Baseline) 

 

New York General Group 7



Categorical Artificial Intelligence: A Rigorous Framework for Next-Generation Language Models 

Figure 2: CAI Improvement over Best Baseline 
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Figure 3: Token Efficiency (Relative Output Tokens) 
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Figure 4: Robustness to Prompt Injection 
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