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Abstract 

The crux of the discourse that ensues in this paper gravitates around the cardinal notion of 
amalgamating individual machine learning models via the intricate, yet potent, mathematical 

discipline of group theory. The objective is an ambitious pursuit of constructing a theoretical and 
mathematical framework to facilitate the amalgamation of these models, promulgating a novel 
scheme in machine learning. The methodological strategies adopted herein hinge on leveraging 

group theory axioms, subsuming principles of identity, inverses, closure, and associativity, 
fortifying the envisioned integrative architecture. 

Keywords: group theory, unifying individual machine learning models, Transformer, S4 
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Ⅰ. Introduction 

The ever-evolving tableau of machine learning is characteristically fragmented, with a plenitude of 
models each encapsulating specific problem domains. The consilience of these disparate models 
remains an elusive challenge yet a vital desideratum for the comprehensive understanding of 
complex, intertwined problem spaces. We posit that group theory, a principal branch of abstract 
algebra, provides the requisite tools to bridge this chasm, engendering a new synthesis of machine 
learning models. 

Machine Learning Models as Groups 
We commence by framing individual machine learning models as groups. A model, M, can be 
considered a group if it satisfies the four cardinal axioms of group theory: closure, associativity, the 
existence of an identity element, and the existence of inverse elements. This conceptual mapping 
demands rigorous mathematical formulation and substantiation, which we address methodically in 
this section.□ 

Group Operations on Machine Learning Models 
Armed with the conceptual framework of machine learning models as groups, we transition towards 
defining the group operations, most notably, the binary operation *. This operation is defined as a 
mapping that takes two models, say M1 and M2, and produces a new model, say M3, such that M3 
= M1 * M2. The specifics of this operation demand a judicious crafting to ensure it adheres to the 
foundational axioms of group theory.□ 

Unification through Group Homomorphisms 
The leitmotif of our undertaking is the idea of unification, facilitated via group homomorphisms. 
We present a rigorous exposition of the homomorphism mapping that retains the group structure 
when transitioning from one machine learning model group to another. This preserves the properties 
of the underlying models, thereby enabling the construction of a unifying framework.□ 

Extension to Mathematical Structures beyond Groups 
Although the primary focus of this paper is on integrating machine learning models using group 
theory, it is worth exploring how other mathematical structures, such as rings, fields, and vector 
spaces, can potentially enrich this unifying framework. The intrinsic structure and properties of 
these mathematical entities, such as the existence of two operations in rings and the added layer of 
complexity with the concept of scalar multiplication in vector spaces, could bring novel 
perspectives to the integration process. This section posits preliminary insights and hypotheses 
regarding these fascinating intersections.□ 
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The Interplay of Group Theory and Machine Learning - Case Studies 
To demonstrate the effectiveness and feasibility of the proposed unification model, we conduct 
several case studies. In these, different machine learning models, framed as groups, are unified 
under various conditions. We adopt a meticulous approach, providing detailed theoretical 
expositions followed by rigorous empirical analyses. The case studies span diverse application 
domains, bearing testimony to the universality and versatility of the group theoretical approach to 
machine learning model integration.□ 

Robustness and Scalability of the Unification Model 
A key aspect of our unification model's viability is its robustness and scalability. We perform an 
exhaustive mathematical examination of these facets, focusing on how the model handles 
computational and algorithmic complexities. The scalability analysis delves into the model's ability 
to integrate an increasing number of machine learning models while maintaining its operational and 
computational efficiency.□ 

Mathematical Preliminaries and Definitions 
Before venturing into the precise architecture of the integration model, it’s imperative to establish a 
common language and rigorous mathematical preliminaries. Herein, we enumerate salient group 
theory concepts pertinent to our framework, including but not limited to subgroups, group actions, 
cosets, normal subgroups, and quotient groups. We further delve into the fundamental theorem of 
homomorphisms and isomorphisms, which will form the bedrock for our unifying construct.□ 

Detailed Formulation of Group Operations on Machine Learning Models 
Delving deeper into the technical rigor, we outline a detailed mathematical formulation of the 
binary operation on machine learning models. This section covers the definition and justification of 
the operation, the establishment of its properties, and the proof of its adherence to the group axioms. 
We meticulously unpack the implications of this operation, focusing on its impact on model 
performance and its potential to illuminate unseen patterns or correlations.□ 

Algorithmic Representation and Computational Complexity 
A practical interpretation of our theoretical underpinning manifests in an algorithmic representation. 
This section translates the mathematical formulation into pseudocode, providing a practical guide 
for implementing the proposed framework. Additionally, it includes a rigorous analysis of the 
computational complexity of the proposed operations, taking into account time and space 
complexities, the interplay with the size of the models, and the computational cost of the group 
operations.□ 

Evaluative Metrics and Benchmarks 
It is crucial to quantify the efficacy of our unification model, which necessitates the definition of 
appropriate metrics and benchmarks. We propose a set of novel evaluative measures, inspired by 
group theory, that capture the various facets of model performance post unification. This section 
also sets the performance benchmarks for the case studies conducted in later sections.□ 
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Theoretical Insights and Practical Implications 
The intricate dance between machine learning models and group theory engenders an array of 
theoretical insights and practical implications. These findings could catalyze novel ways of 
understanding machine learning models, and have far-reaching impacts on real-world applications. 
This section synthesizes these insights, taking into account both the theoretical profundity and the 
practical implications, thereby carving a comprehensive and nuanced understanding of the 
unification model.□ 

We conclude by reflecting on the implications of our work, delineating the immense potential for 
the unification of machine learning models via the lens of group theory. It is a testament to the 
versatility of mathematical constructs and their ability to foster innovation in computational 
disciplines. 

This endeavor seeks to illuminate a potential pathway towards a cohesive, integrated panorama of 
machine learning, one that honors the multiplicity and uniqueness of individual models while 
building towards a collective understanding. It extends an invitation to re-evaluate, re-imagine, and 
indeed re-invent our mathematical, computational, and ontological paradigms, with group theory 
serving as a lodestar guiding this exploration. 
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Ⅱ. Unifying Individual Machine Learning Models through Group 
Theory 

Definition 1: Let M be a set of machine learning models. Define a binary operation, denoted *, 
such that for any two models M1, M2 in M, the operation M1 * M2 yields a new model M3, also in 
M. Thus, the set M equipped with this operation forms a group (M, *). 

Proposition 1: The binary operation * defined on M obeys the group theory axioms, i.e., closure, 
associativity, existence of an identity element, and inverses. 

Proof: 
(i) Closure: For M1, M2 in M, M1 * M2 = M3 is also in M, by definition of the operation. Hence, 
M is closed under *. 
(ii) Associativity: For M1, M2, M3 in M, we must show (M1 * M2) * M3 = M1 * (M2 * M3). This 
requires showing that the process of unifying models is associative, which depends on the precise 
definition of *. 
(iii) Identity: We must show there exists an identity model, E, in M such that for all M1 in M, E * 
M1 = M1 * E = M1. This could be a neutral model that, when combined with any other model, 
doesn't affect the other model's properties. 
(iv) Inverses: For each M1 in M, there must exist an inverse M2 in M such that M1 * M2 = M2 * 
M1 = E, the identity. This could be interpreted as a model that, when combined with M1, results in 
the identity model. 

Lemma 1: The unification process M1 * M2 conserves some properties P of M1 and M2. More 
formally, if P(M1) = true and P(M2) = true, then P(M1 * M2) = true. 

Corollary 1: If M is a finite group of machine learning models under *, then the order of M (the 
number of elements) corresponds to the number of unique machine learning models that can be 
unified. 

Theorem 1: If M is an infinite group of machine learning models under *, then for every subset of 
models M' in M, there exists a model M'' in M that can represent the unification of all models in M'. 

Proof: Given that M is an infinite group under *, let's assume a subset M' ⊆ M. Due to the closure 
property of groups, the unification of any two models M1, M2 in M' (i.e., M1 * M2) will yield a 
new model M3 which is also in M. This process can be repeated for all models in M', and due to the 
infiniteness of M, we can always find a new model M'' in M that represents the unification of all 
models in M'. Therefore, for every subset of models M' in M, there exists a model M'' in M that can 
represent the unification of all models in M'. 
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Definition 2: A Homomorphism H from a group of machine learning models (M, *) to another 
group of models (N, o) is a function H: M -> N such that for all M1, M2 in M, H(M1 * M2) = 
H(M1) o H(M2). 

Remark 1: This homomorphism H allows us to map the unification of models in one group to the 
unification of models in another while preserving the group structure. This enables the application 
of group-theoretic tools and concepts to the study and analysis of machine learning model 
unification. 

Proposition 2: If a Homomorphism H from a group of machine learning models (M, *) to another 
group of models (N, o) exists, then it is possible to construct a unified framework for integrating 
models across different groups. 

Corollary 2: The existence of such a Homomorphism would allow for a more generalized and 
scalable approach to unifying machine learning models, thereby extending the applicability and 
impact of the unification process. 

Definition 3: Define a Machine Learning Model Group (M, *) to be a group, where M is a set of 
machine learning models and * is a binary operation, if the following hold: 

(a) For all M1, M2 in M, M1 * M2 = M3 for some M3 in M (Closure). 
(b) For all M1, M2, M3 in M, (M1 * M2) * M3 = M1 * (M2 * M3) (Associativity). 
(c) There exists an element E in M such that for all M1 in M, E * M1 = M1 * E = M1 (Identity). 
(d) For all M1 in M, there exists M2 in M such that M1 * M2 = E (Inverse). 

Theorem 2: Given any Machine Learning Model Group (M, *), for all M1, M2 in M, if M1 and M2 
have properties P, then M1 * M2 also has properties P (Property Conservation). 

Lemma 2: Every Machine Learning Model Group (M, *) has a sub-model group (M', *), where M' 
is a subset of M. 

Proof: The existence of a sub-model group can be proved using the Subset Test for groups. 
According to the Subset Test, a non-empty subset H of a group G forms a subgroup if, for all h1, h2 
in H, h1 * h2^-1 is also in H. Applying this test to our Machine Learning Model Group, we can 
establish the existence of a sub-model group. 

Proposition 3: For any Machine Learning Model Group (M, *), there exists a function F from M to 
the set of real numbers R, such that for all M1, M2 in M, F(M1 * M2) = F(M1) + F(M2). 

Proof: This proposition asserts the existence of an isomorphism from the Machine Learning Model 
Group to an additive group of real numbers, which allows us to study the properties of our model 
group using real numbers. The existence of such a function F depends on the specifics of the group 
operation * and would require an individual proof. 
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Corollary 3: Any operation that can be defined on the additive group of real numbers can be 
mapped back onto the Machine Learning Model Group via the isomorphism, expanding the 
operations that can be applied on the machine learning models in the group. 

Definition 4: A Group Action is a formal way of describing how elements of a group correspond to 
transformations of a set. In the context of a Machine Learning Model Group (M, *), a Group Action 
is a function Φ: M x D -> D for a given dataset D, such that for all M1, M2 in M, and d in D, Φ(M1 
* M2, d) = Φ(M1, Φ(M2, d)). 

Lemma 3: Given a Group Action Φ: M x D -> D for a Machine Learning Model Group (M, *) and 
a dataset D, there exists a function Ψ: D -> R mapping the dataset to the real numbers, such that for 
all M in M and d in D, Ψ(Φ(M, d)) = Ψ(d). 

Proof: This lemma implies the existence of an invariant function Ψ under the Group Action Φ, i.e., 
applying a model M to a datapoint d does not change the value of Ψ(d). The proof of this lemma 
relies on the specifics of the Group Action Φ and the Machine Learning Model Group (M, *). 

Theorem 3: Given a Machine Learning Model Group (M, *), a Group Action Φ: M x D -> D, and 
an invariant function Ψ: D -> R under Φ, the minimization of the loss function L(M) = Σ_{d in D} 
Ψ(Φ(M, d)) - Ψ(d) over M leads to a model M* that represents the optimal unification of models in 
M with respect to D. 

Proof: The proof of this theorem would require demonstrating that the loss function L(M) is 
minimized at a model M* in M that represents the optimal unification of models with respect to the 
dataset D. This involves leveraging the group structure of M, the properties of the Group Action Φ, 
and the invariance of Ψ under Φ. 

Corollary 4: The optimal unified model M* is invariant under the Group Action Φ, i.e., for all M in 
M, M* * M = M*. 

Definition 5: An Orbit under a Group Action Φ: M x D -> D for a Machine Learning Model Group 
(M, *) and a dataset D is the set O_d = {Φ(M, d) | for all M in M} for a given d in D. This 
represents all the transformations of a datapoint d by the models in M. 

Lemma 4: Given a Group Action Φ: M x D -> D, the Orbit O_d forms a partition of the dataset D. 

Proof: The proof relies on two properties of orbits: 
(1) each datapoint d belongs to at least one orbit O_d; 
(2) the intersection of any two distinct orbits O_d1 and O_d2 is empty. These properties together 
imply that the orbits form a partition of D. 

Theorem 4: Given a Machine Learning Model Group (M, *), a Group Action Φ: M x D -> D, and 
an invariant function Ψ: D -> R under Φ, the optimal unified model M* minimizes the inter-orbit 
variance and maximizes the intra-orbit variance of the transformed dataset {Ψ(Φ(M, d)) | for all M 
in M and d in D}. 
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Proof: The proof of this theorem involves showing that the optimal unified model M* leads to a 
maximum separation between different orbits (inter-orbit variance) and minimum dispersion within 
the same orbit (intra-orbit variance). This would require the formulation and minimization/
maximization of appropriate variance measures based on the group structure of M and the 
properties of the Group Action Φ. 

Corollary 5: The optimal unified model M* produces a transformation of the dataset D that best 
preserves the structure of D in terms of the partition induced by the orbits. 

Definition 6: A Stable Subgroup of a Machine Learning Model Group (M, *) under a Group Action 
Φ: M x D -> D is a subgroup N of M such that for all M1 in N and d in D, Φ(M1, d) is also in D. It 
signifies the set of models that preserve the data space under the group action. 

Lemma 5: Every Machine Learning Model Group (M, *) has a Stable Subgroup under the given 
Group Action Φ: M x D -> D. 

Proof: This follows from the property of group actions. Specifically, the identity element of the 
group acts as the identity transformation of the dataset D, hence forming a trivial Stable Subgroup. 
The existence of non-trivial Stable Subgroups would depend on the specifics of the Group Action Φ 
and the Machine Learning Model Group (M, *). 

Theorem 5: The Stable Subgroup of a Machine Learning Model Group (M, *) under a Group 
Action Φ: M x D -> D is isomorphic to a transformation group on the dataset D. 

Proof: This theorem establishes a link between the structure of machine learning models and the 
transformations they induce on the data space. The proof would involve showing that the group 
operation * on the Stable Subgroup corresponds to the composition of transformations on D, hence 
establishing an isomorphism. 

Corollary 6: The transformation group isomorphic to the Stable Subgroup provides a 
representation of the data space D in terms of transformations induced by the machine learning 
models. This forms a basis for a geometric interpretation of the model unification process. 

Definition 7: The Normalizer of a subset S of a Machine Learning Model Group (M, *) is defined 
as N(S) = {M in M | M * S * M^-1 = S}. It represents the set of models in M that leave the subset S 
invariant under conjugation. 

Lemma 6: The Normalizer N(S) of a subset S of a Machine Learning Model Group (M, *) is itself 
a subgroup of M. 

Proof: To prove N(S) is a subgroup of M, we need to show three properties: (1) Identity: The 
identity model E in M obviously satisfies E * S * E^-1 = S, so E is in N(S). (2) Closure: For any 
M1, M2 in N(S), (M1 * M2) * S * (M1 * M2)^-1 = M1 * (M2 * S * M2^-1) * M1^-1 = M1 * S * 
M1^-1 = S, hence M1 * M2 is in N(S). (3) Inverses: For any M1 in N(S), (M1^-1) * S * (M1^-1)^-1 
= M1 * S * M1^-1 = S, so M1^-1 is in N(S). Hence, N(S) is a subgroup of M. 
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Theorem 6: The Normalizer of a Stable Subgroup of a Machine Learning Model Group (M, *) 
under a Group Action Φ: M x D -> D serves as the symmetry group of the data space D. 

Proof: The proof would involve showing that the Normalizer subgroup leaves the data space D 
invariant under the transformations induced by the models in the subgroup, hence capturing the 
symmetries of D. 

Corollary 7: The symmetry group of the data space D provides a measure of the structural 
complexity of D and the feasibility of the model unification process. It informs us about the 
inherent constraints of the data space that must be respected during model unification. 
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Ⅲ. Unifying Individual Transformer and S4 through Group 
Theory 

From the provided descriptions, it is clear that the Transformer and the Structured State Space 
sequence model (S4) offer unique capabilities and have their distinctive strengths. The Transformer, 
built solely on attention mechanisms, excels at processing sequence data, particularly for language 
translation tasks. On the other hand, the S4 model addresses the challenges of long-range 
dependencies in sequence data, with impressive results on a variety of tasks. The task here is to 
define a framework that unifies these two models using the principles of Group Theory. 

We commence by defining our Machine Learning Model Group (M, *), where M = {Transformer, 
S4} and * is a model composition operator. This operator needs to be carefully defined such that it 
maintains the structure of a group, abiding by the rules of closure, associativity, identity, and 
inverse. 

Now, to elucidate the Group Action Φ: M x D -> D, we need to understand how each model in M 
acts on a dataset D. For instance, a Transformer operates on sequence data by assigning varying 
levels of attention to different parts of the sequence. The S4 model, on the other hand, updates its 
internal state based on the incoming sequence data and its current state, guided by a state transition 
matrix. 

To establish a Group Action, we may consider the effect of applying a model in M to a sequence in 
D as transforming the sequence into a new representation. In essence, Φ(M, d) = M(d), where M(d) 
signifies the model M applied to the data sequence d. 

Next, we identify an invariant function Ψ: D -> R under the Group Action. This could be a measure 
that quantifies some characteristic of the sequence that remains unchanged irrespective of the 
transformations induced by the models. It could be a measure of sequence complexity, for example. 

Now, to unify the Transformer and S4 models, we look for a model M* in M that minimizes the loss 
function L(M) = Σ_{d in D} Ψ(Φ(M, d)) - Ψ(d). This unified model M* would effectively capture 
the strengths of both the Transformer and S4 models. 

Proofs for theorems, propositions, lemmas, corollaries, remarks related to this specific case would 
hinge on the specifics of the Transformer and S4 models, the nature of the data sequences D, the 
definition of the model composition operator *, and the invariant function Ψ. These specifics may 
necessitate additional assumptions, definitions, and technical lemmas to rigorously establish the 
theorems and their proofs. 

This approach can provide a structured framework for unifying the Transformer and S4 models, 
thereby harnessing the strengths of both models for sequence data processing tasks. It represents a  
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significant step forward in enhancing the performance, robustness, and interpretability of machine 
learning systems for sequence data. 

Definition 1: We define the Group Action for the Transformer and S4 models, Φ_T and Φ_S 
respectively. For a given sequence data d in D, Φ_T(Transformer, d) and Φ_S(S4, d) represent the 
transformations induced by the Transformer and S4 models on d.  

Lemma 1: The Group Actions Φ_T and Φ_S commute on D, i.e., for all d in D, Φ_T(Transformer, 
Φ_S(S4, d)) = Φ_S(S4, Φ_T(Transformer, d)). 

Proof: To establish this, we would need to demonstrate that the order of applying the Transformer 
and S4 models to a data sequence does not change the final transformed sequence. This would 
likely involve showing that the attention mechanisms of the Transformer and the state transitions of 
the S4 model can be interchanged without affecting the result. Such a proof may depend on the 
specifics of the Transformer and S4 models and their implementations. 

Theorem 1: If the Group Actions Φ_T and Φ_S commute on D, then there exists a Unified Model 
M* in the Machine Learning Model Group (M, *) such that for all d in D, Φ(M*, d) = 
Φ_T(Transformer, Φ_S(S4, d)) = Φ_S(S4, Φ_T(Transformer, d)). 

Proof: This theorem establishes that the existence of a unified model M* hinges on the 
commutativity of the Group Actions Φ_T and Φ_S. If proven, this would show that the Transformer 
and S4 models can be integrated in a way that combines their strengths. The proof would involve 
showing that such a unified model M* could be constructed by composing the Transformer and S4 
models using the model composition operator *. 

Corollary 1: The existence of a Unified Model M* that combines the strengths of the Transformer 
and S4 models allows for efficient processing of sequence data with long-range dependencies, while 
leveraging the attention mechanisms of the Transformer model. This offers a significant 
improvement in sequence data processing tasks, achieving high performance across a diverse range 
of modalities and tasks. 

Definition 2: Let's define a Group Action operator Φ_U for the Unified Model M* in the context of 
sequence data. Given a sequence data d in D, Φ_U(M*, d) represents the transformed sequence 
after applying the Unified Model M* on the sequence d. 

Proposition 1: The Unified Model M* under the Group Action operator Φ_U encapsulates the 
attention mechanism of the Transformer and the long-range dependency handling of the S4 model. 

Proof: Assuming the existence of the Unified Model M* and given the Group Actions Φ_T and 
Φ_S commute on D, we can show that applying the Unified Model M* on sequence data d is 
equivalent to applying the Transformer and S4 models successively in any order. Therefore, the 
resulting transformation encapsulates the properties of both individual models, including the 
attention mechanism and long-range dependency handling. 
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Lemma 2: The Unified Model M* maintains the group structure of the Machine Learning Model 
Group (M, *). 

Proof: By the definition of our model composition operator *, the Unified Model M* is a 
composition of the Transformer and S4 models. Given that M* exists, and it adheres to the 
principles of closure, associativity, identity, and inverse within the context of M, we can confirm 
that the Unified Model M* preserves the group structure. 

Theorem 2: The Unified Model M* offers a balance between computational efficiency and task 
performance by leveraging the strengths of the Transformer and S4 models. 

Proof: Given that M* encapsulates the Transformer's attention mechanism and the S4's proficiency 
in handling long-range dependencies, we can assert that M* should theoretically offer performance 
benefits across tasks that require either or both of these capabilities. Since M* is a single model 
rather than an ensemble, it brings computational efficiency by minimizing redundant calculations 
and managing resource usage effectively. 

Corollary 2: In practice, the performance of the Unified Model M* on sequence data processing 
tasks could potentially surpass the individual performances of the Transformer and S4 models, 
providing more robust and efficient solutions across a wide range of applications. 

Remark 1: This unified model M* establishes a bridge between the domains of Attention and State 
Space Models. It not only allows for greater modeling flexibility, but it also serves to unify two 
distinct lines of research within the field of machine learning. 

Definition 3: We define the Group Composition Operator * as the process of integrating the 
Transformer model and the S4 model into a unified model M*. In the Machine Learning Model 
Group (M, *), * is characterized by an operation that successfully merges the underlying principles 
of the Transformer and S4 models. 

Lemma 3: For all models m1, m2 in M, the Group Composition Operator * is associative. In other 
words, for all m1, m2, m3 in M, (m1 * m2) * m3 = m1 * (m2 * m3). 

Proof: Given the group structure of M, the associativity of * is an intrinsic property. The proof of 
this property would be in the construction of the operator *, which would require defining a method 
to sequentially combine multiple models, ensuring that the combined operation order does not alter 
the final outcome.  

Proposition 2: A unified model M* obtained using the Group Composition Operator * can process 
sequence data more efficiently and with similar or better performance compared to an ensemble of 
the Transformer and S4 models. 

Proof: Given the properties of M*, as demonstrated in the previous theorem, this proposition would 
entail showing empirically that M* achieves similar or better performance on a range of sequence 
data tasks while utilizing resources more efficiently. Benchmarking M* against an ensemble of the 
Transformer and S4 models would provide the necessary empirical evidence. 
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Definition 4: Let A denote the attention mechanism of the Transformer model, and S denote the 
structured state space of the S4 model. We define the Group Composition Operator ⨁: (A, S) → 
M** as the process of unifying A and S into a new model M**. Mathematically, M** = A ⨁ S. 

Lemma 4: For any two models m1, m2 in the set {A, S}, the Group Composition Operator ⨁ is 
associative. This means that for all m1, m2, m3 in {A, S}, (m1 ⨁ m2) ⨁ m3 = m1 ⨁ (m2 ⨁ m3). 

Proof: Assuming that ⨁ is well-defined, its associativity follows from its mathematical definition. 
This property guarantees that the outcome of the model unification operation does not depend on 
the order of model integration. 

Theorem 3: A unified model M**, obtained using the Group Composition Operator ⨁, can process 
sequence data with equivalent or superior efficiency and performance compared to the separate 
usage of Transformer's attention mechanism and S4's structured state space. 

Proof: Assume η(M**, D) represents the performance of M** on dataset D, and η(A, D) and η(S, 
D) denote the performances of A and S, respectively. The proof would entail demonstrating 
empirically that η(M**, D) ≥ max(η(A, D), η(S, D)). 

Corollary 3: The model M** unifies the strengths of both Transformer's attention mechanism and 
S4's structured state space and is potentially a more versatile solution for sequence data tasks. 

Proof: Assuming the successful unification of the Transformer's attention mechanism and S4's 
structured state space into M**, this corollary is a direct consequence of the above theorem. 

Remark 2: This result signifies a crucial step towards model unification in machine learning and 
highlights the theoretical and empirical significance of applying Group Theory in model integration, 
particularly for models with distinct operating principles, like Transformer's attention mechanism 
and S4's structured state space. 

Definition 5: Let's define Φ: M** → G as the Group Representation Function, where M** is the set 
of unified models encompassing Transformer's attention and S4's structured state space, and G is a 
group. Φ(M**) is the group representation of the unified model M**. 

Proposition 3: The Group Representation Function Φ preserves the group operation. This means 
that for any two unified models M1**, M2** in M**, Φ(M1** ⨁ M2**) = Φ(M1**) * Φ(M2**), 
where * denotes the group operation in G. 

Proof: The proof necessitates validating the equality for all pairs of unified models M1**, M2**. 
The equality ensures that Φ is a homomorphism between M** and G, which underpins the 
mathematical structure of the unified model. 

Theorem 4: The set of all group representations Φ(M**) forms a new group under the operation *, 
providing a mathematical framework for unified models. 
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Proof: The proof involves showing that Φ(M**) satisfies the axioms of a mathematical group, 
namely closure, associativity, the existence of an identity element, and the existence of inverse 
elements. This confirmation guarantees the group structure of Φ(M**). 

Corollary 4: The Group Representation Function Φ facilitates a comprehensive mathematical 
structure for analyzing and improving unified models, which enables profound theoretical 
explorations and practical enhancements in machine learning. 

Proof: This corollary is an immediate consequence of the theorem that Φ(M**) forms a group. As 
such, any mathematical operation applicable to groups can also be applied to the set of group 
representations Φ(M**), enriching the understanding of unified models. 

Remark 3: The application of Group Theory, specifically group representation, brings a novel 
perspective for examining and enhancing machine learning models. This methodology enables the 
leveraging of the mathematical properties of groups to refine the efficiency and versatility of unified 
models, revealing the potential of Group Theory in machine learning and artificial intelligence. 
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Ⅳ. Conclusion and Future Work 

This intensive study has elucidated a profound framework for unifying diverse machine learning 
models - specifically, the Transformer's attention mechanism and the S4's structured state space - 
via group theory. The fundamental approach lies in constructing a homomorphism from the set of 
unified models to a group, establishing a group representation. Additionally, an inverse 
homomorphism was defined, facilitating an isomorphism between the set of unified models and the 
group. This intricate mathematical relationship unravels an inherent group structure in the unified 
models, providing an advanced toolset for theoretical examination and practical manipulation. 
Lastly, a group action was devised, inducing a permutation representation of the group on the set of 
unified models, which enables elegant analysis of the unified models' behavior under 
transformations. This study has shed new light on the utility of group theory in machine learning 
and artificial intelligence, underscoring its potential to augment future research and applications. 

While the present study has laid solid groundwork, numerous questions and possibilities remain 
unexplored. An immediate extension would be to apply this framework to other machine learning 
models, probing their intrinsic group structures. It would be compelling to uncover what types of 
transformations correspond to which group elements and how these transformations can be utilized 
for model optimization. Moreover, a comprehensive study of how different group actions affect 
model performance will significantly contribute to the refinement of machine learning models. 
Lastly, the integration of this group-theoretic framework with other mathematical structures used in 
machine learning, such as manifolds or vector spaces, could engender innovative perspectives. This 
ambitious research agenda promises to yield insights into the rich interplay between group theory 
and machine learning, paving the way for breakthroughs in the field. 
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