New York General Group September 27, 2025

Technical Field

The present invention relates to a metaverse system that provides real-time threedimensional environmental reconstruction and interaction capabilities through feed-forward neural network architectures. The system enables users to experience immersive virtual environments derived from minimal visual input while maintaining geometric consistency and spatial awareness across distributed computational nodes.

Background

Current metaverse implementations suffer from substantial limitations in their ability to reconstruct three-dimensional environments from arbitrary visual inputs. Existing systems require extensive preprocessing, manual annotation, or computationally intensive optimization procedures to generate coherent spatial representations. These constraints impose significant barriers to scalability and real-time interaction, particularly when users attempt to introduce novel environments or objects into the shared virtual space. The computational overhead associated with traditional geometric reconstruction methods further restricts the accessibility of immersive experiences to users with limited hardware capabilities.

Traditional three-dimensional reconstruction pipelines employ iterative optimization techniques that demand substantial processing time and memory resources. The reliance on geometry-based post-processing creates bottlenecks that prevent instantaneous environmental updates, thereby degrading the responsiveness essential for natural user interaction within virtual spaces. Furthermore, conventional approaches typically specialize in isolated tasks such as depth estimation or camera localization, necessitating complex integration frameworks to achieve comprehensive scene understanding.

The present state of the art lacks a unified architecture capable of simultaneously inferring camera parameters, depth maps, point clouds, and feature correspondences from arbitrary image collections without requiring specialized preprocessing or optimization stages. This fragmentation of functionality imposes architectural complexity and introduces failure modes at the interfaces between disparate computational modules.

Summary of the Invention

The present invention addresses these deficiencies through a metaverse system incorporating a feed-forward transformer architecture that directly infers comprehensive three-dimensional scene attributes from one or more visual inputs. The system processes image sequences through alternating attention mechanisms that balance frame-specific feature extraction with global contextual integration, enabling coherent spatial reconstruction without iterative refinement.

The core innovation resides in the simultaneous prediction of interdependent geometric quantities through a shared representational backbone. The system generates camera intrinsic and extrinsic parameters, dense depth maps, viewpoint-invariant point maps, and feature descriptors for correspondence tracking in a single forward pass. This unified approach eliminates the computational overhead associated with sequential processing pipelines while improving overall accuracy through implicit geometric constraints learned during training

The alternating attention architecture employs frame-wise self-attention layers that process individual image tokens independently, followed by global self-attention layers that integrate information across all input frames. This design enables the system to maintain spatial coherence across arbitrary numbers of input views while preserving computational efficiency. The frame-wise layers normalize activations within each image independently, preventing distribution shifts that would otherwise occur when processing variable numbers of inputs. The global layers subsequently establish correspondences and enforce geometric consistency across the entire scene.

The system incorporates specialized prediction heads that transform the shared feature representation into task-specific outputs. A camera head processes augmented tokens containing learnable embeddings to generate rotation quaternions, translation vectors, and field-of-view parameters for each input frame. Dense prediction heads employ progressive upsampling through depth-prediction transformers to generate pixel-aligned depth maps and three-dimensional point clouds. A tracking head leverages correlation volumes computed from dense feature maps to establish point correspondences across frames without assuming temporal ordering.

The metaverse implementation utilizes these capabilities to enable users to instantaneously integrate physical environments into the virtual space by capturing images with standard camera devices. The system reconstructs the

geometric structure and appearance of the physical scene in real-time, generating a three-dimensional representation that preserves metric accuracy and supports natural interaction. Users navigate the reconstructed environment through avatar representations whose positions and orientations are determined by the same geometric inference framework that processes environmental inputs.

The system maintains consistency across distributed computational nodes through a canonical coordinate frame established by designating the first processed image as the reference origin. All subsequently processed images yield geometric predictions expressed in this reference frame, ensuring that multiple users observing the same physical environment generate compatible virtual representations. The viewpoint-invariant point maps enable seamless fusion of observations from different users, creating a unified spatial model that supports collaborative interaction.

The architecture supports dynamic scene updates through incremental processing of new visual inputs. When a user introduces a novel object or modifies the environment, the system processes the updated imagery and integrates the resulting geometric predictions into the existing representation without requiring global recomputation. The feed-forward nature of the inference process ensures that updates occur with minimal latency, maintaining the responsiveness necessary for natural interaction.

The system implements attention-based feature extraction that generates semantically meaningful representations suitable for downstream processing tasks. These features support object recognition, segmentation, and interaction affordances that extend beyond geometric reconstruction. The metaverse application leverages these capabilities to enable users to interact with virtual objects through natural gestures, with the system inferring user intent from visual observations of hand positions and movements.

The depth prediction mechanism incorporates uncertainty estimation through learned variance parameters that indicate the reliability of geometric predictions at each pixel location. The metaverse system utilizes these uncertainty estimates to guide rendering strategies, applying higher-quality synthesis techniques to regions of high confidence while employing efficient approximations for uncertain areas. This adaptive rendering approach optimizes computational resource allocation while maintaining visual quality where it most impacts user perception.

The point tracking capabilities enable the system to establish persistent correspondences across frames even in the presence of occlusion or viewpoint changes. The metaverse application employs these correspondences to support object manipulation, allowing users to grasp, move, and release virtual objects with the system maintaining awareness of object identity and position throughout the interaction sequence. The tracking mechanism operates on unordered image collections, enabling it to function effectively with asynchronous capture from multiple users.

The camera parameter predictions include intrinsic calibration estimates that account for lens distortion and optical characteristics of the capturing device. The system learns these properties implicitly from the training data distribution, enabling it to generalize across diverse camera types without requiring manual calibration procedures. The metaverse application utilizes these predictions to ensure that visual content rendered to users accounts for the optical properties of their display devices, maintaining geometric accuracy and preventing visual

The architectural design incorporates register tokens that provide auxiliary capacity for representing complex scene attributes without directly contributing to specific output predictions. These tokens undergo the same sequence of transformations as image and camera tokens, allowing them to capture global scene properties such as illumination conditions, material characteristics, or semantic context. The metaverse system leverages information encoded in register tokens to guide appearance synthesis, ensuring that virtual objects inserted into reconstructed environments exhibit consistent shading and reflectance properties.

The depth map predictions employ gradient-based supervision during training to ensure smoothness constraints that reflect the piecewise-continuous nature of physical surfaces. The metaverse rendering pipeline utilizes these smooth depth maps to generate view-dependent effects such as specular highlights and reflections that respond naturally to changes in user viewpoint. The gradient consistency also improves the quality of depth-based reprojection, reducing artifacts when synthesizing novel views of the environment.

The system implements a multi-task learning framework that trains all prediction heads simultaneously using a weighted combination of task-specific losses. The joint training enables the network to discover shared representations that benefit multiple geometric inference tasks, improving overall accuracy while reducing the total parameter count relative to independently trained specialist models. The metaverse application benefits from this efficiency by supporting real-time operation on consumer hardware platforms.

The point map representation employs a world-coordinate parameterization that remains invariant to camera viewpoint, enabling direct comparison and fusion of geometric predictions from different input frames. The metaverse system exploits this property to implement collaborative scene reconstruction, where multiple users contribute visual observations that are automatically integrated into a coherent global model. The viewpoint invariance eliminates the need for explicit

alignment procedures, reducing computational overhead and enabling real-time updates.

The tracking feature extraction generates dense descriptor maps at each pixel location, encoding local appearance and geometric context in a high-dimensional embedding space. The metaverse interaction system queries these descriptor maps to identify candidate correspondences when users indicate interest in specific scene regions, supporting operations such as teleportation to indicated locations or retrieval of semantic information about observed objects. The dense nature of the descriptor maps ensures that users can interact with arbitrary scene locations without being constrained to predefined waypoints or object centers.

The camera prediction head processes specialized tokens that aggregate information across the entire image through self-attention mechanisms, enabling the network to reason about global geometric constraints when estimating camera poses. The metaverse navigation system utilizes these pose estimates to determine avatar positions and orientations within the reconstructed environment, ensuring that user perspectives align with the underlying geometric model. The global reasoning capability enables the system to resolve ambiguities that would confound local feature-based approaches, such as disambiguating similar-appearing locations in symmetric environments.

The depth-prediction transformer employs progressive upsampling that combines features from multiple network depths to generate high-resolution output maps. The multi-scale feature integration enables the system to capture both coarse geometric structure and fine surface details, supporting realistic rendering at close viewing distances. The metaverse application leverages these detailed depth maps to implement accurate collision detection and physics simulation, enabling virtual objects to rest naturally on physical surfaces and respond appropriately to user interactions

The uncertainty estimation mechanism computes pixel-wise confidence measures that reflect both aleatoric uncertainty arising from sensor noise and epistemic uncertainty resulting from limited training data coverage. The metaverse system utilizes these distinctions to guide active sensing strategies, prompting users to provide additional visual observations of regions exhibiting high epistemic uncertainty. This feedback loop progressively improves reconstruction quality in areas of interest while avoiding unnecessary computation for regions that are already well-characterized.

The architectural design employs layer normalization and residual connections that stabilize training dynamics and enable the construction of very deep networks with hundreds of transformer layers. The metaverse implementation exploits this representational capacity to model complex scenes containing numerous objects, intricate geometric structures, and varied material properties. The depth of the network allows it to capture hierarchical relationships between scene elements, supporting semantic understanding that extends beyond geometric reconstruction.

The system implements flash attention mechanisms that reduce the computational complexity of self-attention operations from quadratic to linear in the number of input tokens. This optimization enables the metaverse platform to process high-resolution images containing millions of pixels while maintaining real-time performance. The memory efficiency achieved through flash attention allows the system to operate on edge devices with limited computational resources, democratizing access to immersive experiences.

The training procedure employs coordinate normalization that scales geometric predictions to a canonical range, ensuring that the network learns representations that are robust to scene-specific scale variations. The metaverse application inherits this scale invariance, enabling users to interact with environments ranging from tabletop microworlds to architectural spaces without requiring mode-specific adaptations. The normalization also improves numerical stability during training, enabling the use of aggressive learning rates that accelerate convergence

The color augmentation strategy applies independent transformations to each input frame during training, teaching the network to extract geometric information that is invariant to lighting variations. The metaverse system benefits from this robustness when users capture images under diverse illumination conditions, ensuring that reconstruction quality remains consistent across time-of-day changes, weather variations, or differences in artificial lighting. The invariance to color transforms also enables the system to process images from cameras with different color response characteristics without requiring calibration

The point tracking supervision employs ground truth correspondences derived from depth map reprojection, establishing pixel-level alignment across frames that respects the underlying three-dimensional structure. The metaverse interaction system leverages these geometrically consistent correspondences to implement drag-and-drop object manipulation, where users select points on object surfaces and the system tracks these points across subsequent frames to update object positions. The geometric grounding ensures that manipulated objects maintain their physical relationships with the environment, preventing interpenetration or floating artifacts.

The camera token initialization employs learnable embeddings that distinguish the reference frame from subsequent input frames, enabling the network to establish a consistent coordinate system for geometric predictions. The metaverse platform designates the first image provided by each user as that user's local reference frame, with all subsequent environmental observations expressed

relative to this initial viewpoint. The system implements transformation matrices that convert between different users' local frames, supporting collaborative experiences where participants observe the same virtual space from different perspectives

The dense prediction heads incorporate convolutional layers with small receptive fields that refine the coarse feature maps output by the transformer backbone. The local processing enables the network to sharpen geometric boundaries and recover fine surface details that would be smoothed by the global attention mechanisms. The metaverse rendering pipeline utilizes these sharp depth discontinuities to implement accurate edge-aware filtering, generating realistic depth-of-field effects and other view-dependent phenomena.

The multi-dataset training strategy exposes the network to diverse scene types, camera configurations, and annotation qualities, teaching it to generalize across the wide range of inputs encountered in real-world metaverse applications. The system samples training examples from indoor and outdoor environments, synthetic renderings and sensor captures, static scenes and dynamic sequences. The metaverse platform inherits this generalization capability, enabling users to introduce arbitrary environments without encountering domain-specific failure modes

The gradient clipping mechanism limits the magnitude of parameter updates during training, preventing instability that would otherwise arise from occasional large gradients. The metaverse system benefits from the resulting robustness, maintaining consistent performance even when processing challenging inputs such as low-texture surfaces, specular reflections, or translucent materials that violate standard geometric assumptions. The training stability enables the use of large batch sizes that improve statistical efficiency and accelerate convergence.

The mixed-precision computation employs reduced numerical precision for activation values and gradients while maintaining full precision for parameter updates. The metaverse implementation leverages this approach to reduce memory bandwidth requirements and accelerate computation on hardware platforms supporting tensor cores or similar specialized arithmetic units. The precision reduction introduces minimal degradation in reconstruction accuracy while enabling the processing of higher-resolution inputs or larger numbers of frames within fixed computational budgets.

The alternating attention pattern establishes a regular computational structure that admits efficient parallel implementation on modern accelerator architectures. The metaverse system compiles the inference computation into optimized kernels that maximize hardware utilization, achieving throughput rates sufficient for real-time operation. The regular structure also simplifies the analysis of computational requirements, enabling the platform to provide users with accurate estimates of processing time based on input characteristics.

The DINOv2 feature extraction employs self-supervised pretraining on largescale image collections, generating semantic representations that capture object categories, scene types, and contextual relationships. The metaverse application leverages these semantic features to implement intelligent environment organization, automatically clustering similar scenes and suggesting relevant content to users based on their interaction history. The semantic understanding also supports natural language queries, enabling users to locate specific objects or navigate to scene regions matching verbal descriptions.

The positional embedding mechanism encodes the spatial location of each image patch within the overall frame, enabling the network to learn location-specific processing strategies. The metaverse rendering system utilizes position-aware features to implement spatially-varying material properties, applying appropriate shading models to different scene regions based on learned associations between spatial location and material type. The position encoding also supports the learning of camera-specific artifacts such as vignetting or chromatic aberration that vary systematically across the image plane.

The layer scaling initialization sets small initial values for the residual branch contributions, allowing gradients to flow primarily through skip connections during early training phases. The metaverse platform benefits from the resulting training stability, enabling the deployment of very deep architectures that would otherwise suffer from gradient vanishing or exploding. The layer scaling also provides a mechanism for dynamically adjusting the relative importance of different network components, potentially enabling runtime adaptation to varying computational budgets.

The QKNorm operation normalizes the query and key vectors before computing attention weights, preventing the saturation of softmax operations that would otherwise occur when attention logits grow large. The metaverse system benefits from the resulting attention patterns that remain well-distributed across tokens, avoiding degenerate modes where attention concentrates entirely on single locations. The normalization also improves numerical stability when processing long sequences of input frames, enabling the system to handle hundreds of images without encountering overflow or underflow conditions.

The Huber loss formulation combines the benefits of squared-error and absolute-error criteria, providing quadratic gradients near the optimum for fast convergence while limiting the influence of outliers through linear gradients for large residuals. The metaverse reconstruction system inherits robustness to annotation errors and temporary occlusions that would otherwise corrupt geometric predictions. The adaptive loss behavior enables training on datasets with mixed annotation quality without requiring manual curation or outlier removal.

The aleatoric uncertainty prediction generates pixel-wise variance estimates that weight the contribution of each measurement to the overall loss function. The metaverse platform utilizes these uncertainty weights to implement importance sampling during training, concentrating gradient computation on informative regions while avoiding wasted computation on areas where predictions are inherently unreliable. The uncertainty estimates also guide test-time inference, enabling the system to identify and discard unreliable predictions before integrating them into the environmental model.

The gradient-based depth supervision enforces smoothness constraints that reflect the statistical properties of natural scenes, where nearby pixels typically correspond to points on continuous surfaces. The metaverse rendering pipeline benefits from the resulting smooth depth maps, which eliminate high-frequency noise that would otherwise cause flickering artifacts during animation. The gradient supervision also improves the accuracy of normal estimation through finite differencing, enabling realistic shading and lighting effects.

The point map gradient loss similarly enforces spatial coherence in the three-dimensional point predictions, preventing isolated points from deviating significantly from their local neighborhoods. The metaverse collision detection system leverages this smoothness to implement efficient spatial queries using regular grid structures, avoiding the overhead associated with irregular point cloud representations. The smooth point maps also facilitate the generation of surface meshes through implicit function fitting or Poisson reconstruction.

The visibility prediction mechanism generates binary labels indicating whether each tracked point is visible in each frame, enabling the metaverse system to correctly handle occlusions during object manipulation. When a user grasps an object and moves it behind another surface, the tracking system continues to maintain correspondences for the occluded points while correctly suppressing rendering. The visibility prediction employs binary cross-entropy loss during training, learning to recognize the visual cues that indicate occlusion such as depth discontinuities or motion inconsistencies.

The multi-scale feature extraction aggregates representations from different network depths, combining semantic information from deep layers with spatial precision from shallow layers. The metaverse interaction system utilizes multi-scale features to support operations at different levels of abstraction, such as recognizing object categories for high-level planning while simultaneously tracking precise hand positions for manipulation. The hierarchical representation also enables efficient processing through early-exit mechanisms, where simple scenes are processed with fewer layers while complex environments receive the full computational budget.

The convolutional refinement layers apply spatially-localized processing to the upsampled feature maps, recovering fine geometric details that are lost during the coarse-to-fine upsampling process. The metaverse rendering pipeline utilizes these detailed predictions to generate high-quality surface normals through finite differencing, enabling realistic material appearance and lighting effects. The local processing also reduces the computational cost relative to fully-connected approaches, enabling the generation of high-resolution outputs within practical time constraints

The register token mechanism provides auxiliary representational capacity that is not directly constrained by specific output targets, enabling the network to learn latent variables that capture global scene properties. The metaverse application leverages register token representations to predict ambient lighting conditions, estimating the color and intensity of environmental illumination for use in shading virtual objects. The register tokens also encode scene complexity metrics that the platform uses to dynamically adjust rendering quality, allocating more resources to complex environments while maintaining efficiency for simple scenes.

The learnable camera token embeddings distinguish between the reference frame and subsequent views, enabling the network to produce coordinate-frame-consistent predictions across arbitrary numbers of input images. The metaverse platform initializes each user's reference frame with the designated learnable embedding, while all subsequent frames from that user receive the generic camera token. This design enables the system to identify which geometric predictions should be expressed in which user's local coordinate frame, facilitating the subsequent transformation to a shared global frame.

The query-based tracking mechanism samples feature descriptors at user-specified locations, avoiding the computational cost of processing dense correlation volumes for all possible query points. The metaverse interaction system prompts users to indicate points of interest through ray-casting from hand controllers or gaze tracking, then invokes the tracking head to establish correspondences for only these specified locations. The selective processing enables real-time tracking performance even for large numbers of input frames.

The correlation volume computation evaluates the similarity between the query feature and all features in target frames, generating heat maps indicating likely correspondence locations. The metaverse system thresholds these heat maps to identify candidate matching points, then applies sub-pixel refinement through quadratic interpolation to achieve precise localization. The correlation-based approach provides robustness to appearance changes such as lighting variations or partial occlusions that would confound template matching methods.

The self-attention refinement processes the initial correlation-based estimates through multiple transformer layers that enable reasoning about relationships

between different tracked points. The metaverse physics simulation leverages these multi-point constraints to estimate rigid body transformations, determining how objects move and rotate based on the motion of multiple surface points. The attention mechanism allows the system to discount outlier correspondences arising from matching errors, improving the robustness of motion estimation.

The feed-forward architecture eliminates iterative optimization loops, ensuring that inference time scales linearly with the number of input frames rather than exhibiting the superlinear or exponential scaling characteristic of optimization-based methods. The metaverse platform exploits this predictable scaling to provide users with accurate time estimates for processing operations, enabling informed decisions about trading off reconstruction quality against latency. The linear scaling also enables the system to process very large collections of images by distributing frames across multiple computational nodes.

The Perspective-n-Point formulation establishes the mathematical relationship between two-dimensional image observations and three-dimensional point locations given camera intrinsic parameters. The metaverse system employs this relationship during training to enforce consistency between independently predicted depth maps and point maps, implementing a loss term that penalizes discrepancies between the depth implied by the point map and the directly predicted depth value. This consistency constraint improves the overall geometric accuracy by preventing the network from learning degenerate solutions.

The Umeyama alignment algorithm computes the optimal similarity transformation between two point sets, determining the rotation, translation, and scale that minimize the mean squared distance between corresponding points. The metaverse platform employs Umeyama alignment to register geometric predictions from different users into a common coordinate frame, enabling collaborative scene reconstruction. The closed-form solution provided by the algorithm ensures efficient computation, avoiding iterative optimization that would introduce latency.

The flash attention implementation reorganizes the computation of attention weights to exploit the memory hierarchy of modern accelerators, loading query, key, and value matrices in tiles that fit within fast on-chip memory. The metaverse system benefits from the resulting reduction in memory bandwidth requirements, enabling the processing of longer sequences of input frames within fixed memory budgets. The flash attention approach also reduces the latency of attention operations, improving the responsiveness of the interactive experience.

The tensor parallelism strategy partitions the weight matrices across multiple accelerator devices, distributing both storage and computation. The metaverse platform employs tensor parallelism when processing particularly large inputs or when multiple users simultaneously request reconstruction operations, ensuring that computational resources are utilized efficiently. The distributed computation introduces communication overhead for gradient synchronization, but the regular structure of transformer operations admits efficient all-reduce implementations that minimize this cost

The batch processing mechanism groups multiple independent reconstruction requests together, amortizing the fixed overhead associated with kernel launches and data transfers. The metaverse system implements a queuing architecture that buffers user requests until a sufficient number accumulate to fill a batch, then processes them simultaneously. The batching strategy improves overall throughput at the cost of modest increases in latency for individual requests, providing a trade-off that can be tuned based on system load.

The aspect ratio randomization during training exposes the network to images with varying dimensions, teaching it to generate predictions that remain accurate regardless of frame proportions. The metaverse platform benefits from this generalization when processing images captured from devices with different sensor configurations, ensuring that vertical video, horizontal photos, and square crops all yield reliable reconstructions. The aspect ratio variation also improves robustness to cropping operations that users might apply to focus attention on specific scene regions.

The color jittering augmentation randomly perturbs the brightness, contrast, saturation, and hue of input images, forcing the network to extract geometric information that is invariant to color transformations. The metaverse system inherits robustness to color variations arising from automatic exposure adjustment, white balance changes, or color grading applied by camera software. The invariance also enables the system to process images captured under different illumination conditions without requiring explicit color normalization.

The Gaussian blur augmentation introduces controlled degradation of image sharpness, teaching the network to tolerate defocus, motion blur, and optical imperfections. The metaverse platform benefits when processing images captured with consumer cameras that lack precise focus control or exhibit motion blur from handheld capture. The blur augmentation also improves robustness to compression artifacts and other forms of degradation that occur during image transmission.

The grayscale augmentation removes color information from a subset of training images, forcing the network to rely on brightness and texture cues for geometric inference. The metaverse system inherits the ability to process monochrome images, enabling operation with infrared cameras, low-light sensors, or archival photographs. The grayscale training also improves generalization by preventing the network from relying exclusively on color cues that might not transfer across different scene types.

The AdamW optimizer combines the adaptive learning rate mechanism of Adam with weight decay regularization that prevents parameter magnitudes from growing unbounded. The metaverse platform benefits from the resulting generalization, as the weight decay prevents overfitting to the specific scenes encountered during training. The adaptive learning rates enable different parameters to update at different rates based on gradient history, accelerating convergence relative to fixed-rate optimizers.

The cosine learning rate schedule gradually reduces the learning rate from an initial peak value to near zero following a cosine curve, providing aggressive learning during early training while enabling fine-tuned convergence during later phases. The metaverse system inherits the resulting model quality, as the learning rate schedule enables the discovery of flatter minima in the loss landscape that correspond to better generalization. The warmup period linearly increases the learning rate from zero to the peak value during initial iterations, preventing instability that would otherwise arise from applying large updates to randomly initialized parameters.

The gradient checkpointing mechanism reduces memory consumption during backpropagation by recomputing activations rather than storing them, trading increased computation for reduced memory footprint. The metaverse platform employs gradient checkpointing to enable training with larger batch sizes or deeper networks than would otherwise fit in accelerator memory. The checkpointing strategy is configured to recompute only the most memory-intensive operations, minimizing the computational overhead.

The bfloat16 precision format represents floating-point values with reduced mantissa precision while maintaining the same exponent range as standard float32 representation. The metaverse system benefits from the memory savings and computational acceleration provided by bfloat16 arithmetic, while the preserved exponent range prevents the overflow and underflow issues that plague lower-precision formats. The reduced precision introduces minimal degradation in reconstruction accuracy, as geometric prediction is relatively tolerant to numerical errors.

The comprehensive dataset combination exposes the network to diverse scene characteristics, annotation modalities, and capture conditions, teaching representations that generalize across the wide variety of inputs encountered in real-world metaverse applications. The indoor scenes develop understanding of architectural structures, furniture, and domestic objects, while outdoor environments teach about terrain, vegetation, and atmospheric effects. The synthetic data provides perfect ground truth annotations that enable precise supervision, while real-world captures inject the imperfections and complexities of actual sensor systems.

The SfM-derived annotations provide camera poses and sparse point clouds reconstructed through traditional structure-from-motion pipelines, offering metric accuracy and global consistency. The metaverse system learns to reproduce the geometric relationships captured by these annotations, developing understanding of multi-view consistency and triangulation principles. The sparse nature of SfM annotations encourages the network to interpolate structure in untextured regions, learning priors about surface smoothness and connectivity.

The sensor-captured depth maps provide pixel-aligned distance measurements from structured light scanners, time-of-flight cameras, or LiDAR systems, offering dense geometric supervision. The metaverse platform learns to predict depth values that match these high-quality measurements, developing precise metric distance estimation capabilities. The sensor data exposes the network to realistic noise patterns and missing measurements, teaching robustness to the imperfections of real-world sensing.

The synthetic rendering provides ground truth for all geometric quantities including perfect camera parameters, noise-free depth maps, and exact point correspondences, enabling unambiguous supervision. The metaverse system benefits from the perfect annotations during early training when gradient signals must overcome random initialization, establishing a foundation of geometric understanding. The controlled nature of synthetic data also enables targeted generation of challenging scenarios such as extreme viewpoint changes or complex occlusion patterns.

The frame sampling strategy randomly selects between two and twenty-four images from each scene, teaching the network to produce coherent reconstructions from highly variable numbers of input views. The metaverse platform inherits flexibility in the number of input frames, enabling users to provide single images for quick previews or dozens of frames for detailed reconstructions. The variable sampling also improves efficiency by avoiding wasted computation on redundant views when scenes are over-sampled.

The aspect ratio randomization generates training images with dimensions ranging from square to strongly rectangular, forcing the network to accommodate varying image shapes. The metaverse system benefits when processing inputs from devices with different sensor aspect ratios, ensuring reliable reconstruction regardless of whether users capture with traditional cameras, panoramic sensors, or specialized equipment. The randomization also enables the network to handle cropped images that focus on specific scene regions.

The color jittering parameters are tuned to produce realistic variations that might arise from automatic exposure bracketing, white balance adjustment, or artistic color grading. The metaverse platform inherits robustness to these common image transformations, ensuring that reconstruction quality remains consistent even when users apply filters or corrections to their captured imagery. The color

variation also prevents the network from memorizing specific color palettes associated with particular datasets.

The tracking correspondence generation employs geometric reprojection to establish ground truth matches between frames, computing the three-dimensional point corresponding to each pixel through depth unprojection, then projecting this point into other frames using known camera parameters. The metaverse system learns to reproduce these geometric correspondences, developing understanding of parallax, occlusion, and appearance changes across viewpoints. The reprojection-based supervision ensures that learned correspondences respect the underlying three-dimensional structure rather than relying on superficial appearance similarity.

The depth map reprojection establishes correspondences by unprojecting pixels to three-dimensional points using the depth map and camera parameters from the first frame, then projecting these points into subsequent frames and comparing the resulting depths. The metaverse platform employs this consistency check to filter out spurious matches arising from occlusion or dynamic objects, retaining only correspondences that satisfy geometric constraints. The depth comparison threshold is set to accommodate minor annotation errors while rejecting grossly inconsistent matches.

The frame similarity filtering excludes highly dissimilar images from correspondence supervision, avoiding the generation of noisy training signals from image pairs that share minimal overlap. The metaverse system benefits from this curation, as it prevents the network from learning to hallucinate matches in scenarios where no valid correspondence exists. The similarity threshold is calibrated based on feature distance metrics that correlate with successful geometric reconstruction.

The correspondence density adaptation varies the number of supervised point matches based on scene characteristics, densely sampling correspondences in textured regions while reducing supervision in homogeneous areas. The metaverse platform inherits efficiency in computational resource allocation, avoiding wasted effort on redundant constraints while ensuring sufficient supervision where geometric information is available. The adaptive sampling also balances the distribution of training signals across different scene regions, preventing the network from overfitting to highly-textured areas.

The tracking loss downweighting balances the contribution of correspondence supervision against geometric prediction losses, preventing the tracking objective from dominating training dynamics. The metaverse system benefits from this balance, as it ensures that the network develops strong geometric understanding rather than specializing exclusively in feature matching. The weight selection reflects the relative importance of different capabilities for the overall metaverse experience, prioritizing accurate reconstruction over perfect correspondence tracking.

The scene complexity estimation analyzes the distribution of depth values, texture content, and geometric structure to characterize the difficulty of reconstructing each training scene. The metaverse platform employs complexity estimates to implement curriculum learning, initially training on simple scenes before progressively introducing more challenging examples. The complexity-based sampling also ensures that training batches maintain relatively uniform difficulty, preventing individual examples from dominating gradient commutation

The architectural innovations embodied in the present invention enable metaverse experiences that were previously infeasible due to computational constraints or reconstruction quality limitations. Users interact with virtual environments that seamlessly blend physical and synthetic content, with the system automatically handling the geometric complexities of merging these disparate sources. The feed-forward inference eliminates the latency associated with optimization-based reconstruction, enabling responsive interaction that maintains impersion

The unified prediction framework simplifies the system architecture by consolidating multiple geometric inference tasks within a single network, reducing the engineering complexity and potential failure modes associated with multi-stage pipelines. The shared representational backbone enables transfer of learned features across tasks, improving sample efficiency during training and enabling strong performance even for tasks with limited supervision. The metaverse platform leverages this architectural efficiency to minimize resource consumption, enabling deployment on a wider range of hardware platforms.

Detailed Description of the Invention

The present invention implements a metaverse system constructed upon a transformer-based neural network architecture that processes visual information through a sequence of mathematical operations defined over high-dimensional vector spaces. The computational substrate comprises approximately 1.2 billion trainable parameters organized into twenty-four sequential processing blocks, where each block instantiates both frame-wise and global attention mechanisms. The architecture accepts input images represented as three-dimensional tensors with dimensions corresponding to color channels, height, and width, where typical processing involves images resized such that the maximum dimension equals 518 pixels while preserving aspect ratio.

The initial processing stage converts raw pixel values into discrete tokens through application of the DINOv2 feature extractor, specifically employing the Vision Transformer Large variant trained on approximately 142 million images

through self-supervised learning. The DINOv2 model divides each input image into non-overlapping patches of 14 by 14 pixels, generating for each patch a 1024-dimensional feature vector that encodes local appearance, texture, and semantic content. For an input image of 518 by 518 pixels, this patchification process yields 1369 tokens per image, computed as the floor of 518 divided by 14, squared. The DINOv2 feature extraction operates through application of a pretrained transformer network comprising 24 attention layers with 16 attention heads each, where the weights remain frozen during subsequent metaverse system training to preserve the semantic representations learned during pretraining.

Following tokenization, the system augments the token sequence with specialized embeddings that encode task-specific information. For each input image, the system appends one camera token initialized from a learnable 1024-dimensional parameter vector, along with four register tokens similarly initialized from learnable parameters. The camera token serves as an aggregation point for camera-related information, while the register tokens provide auxiliary representational capacity for capturing global scene properties. Importantly, the camera and register tokens for the first input frame are initialized from distinct learnable parameters compared to those for subsequent frames, enabling the network to distinguish the reference coordinate frame from other viewpoints. This distinction proves essential for generating viewpoint-invariant point cloud predictions expressed in the coordinate system of the first camera.

The augmented token sequence, comprising image tokens, camera tokens, and register tokens from all input frames, undergoes processing through the core transformer architecture. Each of the twenty-four processing blocks applies two sequential attention operations. The first operation implements frame-wise self-attention, where tokens from each individual image attend only to other tokens from the same image, including that image's camera and register tokens. This frame-wise attention enables the network to extract image-specific features while normalizing activation statistics independently for each frame, preventing distribution shifts that would otherwise occur when processing variable numbers of input images. The attention mechanism computes for each query token a weighted combination of value vectors, where the weights are determined by the softmax-normalized dot products between the query and all key vectors within the attention scope.

Mathematically, the frame-wise attention for image i computes output tokens h subscript i according to the following formulation. Let T subscript i equal the set of tokens corresponding to image i, including image patches, camera token, and register tokens. For each token t in T subscript i, the attention mechanism first computes query vector q subscript t equals W subscript Q multiplied by x subscript t, key vector k subscript t equals W subscript K multiplied by x subscript t, and value vector v subscript t equals W subscript V multiplied by x subscript Q, W subscript t denotes the input representation for token t and W subscript Q, W subscript K, W subscript V are learnable weight matrices of dimension 1024 by 1024. The output for token t then equals the weighted sum over all tokens s in T subscript i of attention weight alpha subscript t,s multiplied by v subscript s, where alpha subscript t,s equals the exponential of the dot product of q subscript t and k subscript s divided by the square root of the dimension 1024, normalized by the sum over all tokens r in T subscript i of the exponential of q subscript t dot k subscript r divided by the square root of 1024.

The second operation within each processing block implements global self-attention, where tokens from all images attend to tokens from all other images as well as tokens within the same image. This global attention enables the network to establish correspondences across frames, reason about geometric relationships between different viewpoints, and enforce multi-view consistency constraints. The mathematical formulation parallels the frame-wise attention except that the attention scope extends to all tokens across all frames rather than being restricted to tokens from a single image. The global attention mechanism thus computes outputs where the attention weights alpha subscript t,s are normalized over all tokens s from all images rather than only tokens from the same image as the

Both attention operations employ multi-head attention, where the computation described above is performed independently for sixteen separate attention heads, each operating on 64-dimensional subspaces obtained by projecting the 1024-dimensional tokens through head-specific weight matrices. The outputs from all sixteen heads are concatenated and projected back to 1024 dimensions through a learnable output projection matrix. This multi-head design enables the network to attend to information from different representational subspaces simultaneously, capturing diverse geometric and semantic relationships.

To ensure training stability, the system incorporates QKNorm normalization applied to query and key vectors before computing attention weights. Specifically, the query vector q subscript t is replaced by q subscript t divided by the L2 norm of q subscript t, and similarly for key vectors. This normalization prevents the attention logits from growing arbitrarily large, which would cause the softmax operation to saturate and produce degenerate attention patterns concentrating all weight on a single token. The QKNorm operation proves particularly important when processing large numbers of input frames, as the increased number of tokens would otherwise lead to larger maximum dot products and more severe saturation.

Each attention operation is followed by a position-wise feed-forward network comprising two linear transformations with a GELU nonlinearity between them. The first linear transformation projects the 1024-dimensional token representations to 4096 dimensions, applying the GELU activation element-wise to introduce nonlinearity. The second linear transformation projects back to 1024

dimensions. This expansion and contraction allows the network to apply complex nonlinear transformations to each token independently, enriching the representational capacity beyond what attention alone can achieve.

The system employs residual connections around both the attention operation and the feed-forward network, adding the input to each sublayer to its output. These residual connections enable gradient flow through the deep network during backpropagation training, preventing the vanishing gradient problem that would otherwise impede learning in networks with dozens of layers. The residual connections are scaled by learnable LayerScale parameters initialized to 0.01, which gradually increase during training as the network learns useful transformations in each layer. The LayerScale mechanism prevents early training instability that would otherwise arise from applying random initializations through many sequential transformations.

Layer normalization is applied before each attention operation and before the feed-forward network, normalizing the token representations to have zero mean and unit variance across the feature dimension. This normalization stabilizes the distribution of activations throughout the network, enabling the use of larger learning rates and accelerating convergence. The layer normalization parameters include learnable scale and shift parameters that allow the network to recover unnormalized representations if beneficial for the task.

Following processing through the twenty-four alternating attention blocks, the system extracts the output camera tokens corresponding to each input image. These camera tokens have aggregated information about camera parameters through the sequence of global attention operations, where they attended to image tokens from all frames and thus captured geometric relationships indicative of camera poses. The camera tokens undergo further processing through a specialized camera head that converts the 1024-dimensional token representations into explicit camera parameter predictions.

The camera head comprises four additional self-attention layers that operate exclusively on the camera tokens from all frames, enabling further refinement of camera estimates through reasoning about inter-camera geometric constraints. These self-attention layers follow the same architectural design as the global attention layers in the main transformer backbone, employing sixteen attention heads operating on 64-dimensional subspaces. The self-attention mechanism allows each camera token to attend to all other camera tokens, capturing geometric relationships such as the fact that cameras observing the same scene must satisfy epipolar geometry constraints and maintain consistent scale.

After the four self-attention layers, the camera head applies a linear projection that maps each 1024-dimensional camera token to a 9-dimensional output vector encoding camera parameters. The nine dimensions comprise four values for rotation representation, three values for translation, and two values for field of view. The rotation is parameterized as a quaternion q equals open bracket q subscript 0, q subscript 1, q subscript 2, q subscript 3 close bracket satisfying the unit norm constraint that the sum of q subscript 0 squared plus q subscript 1 squared plus q subscript 2 squared plus q subscript 3 squared equals one. The network outputs unnormalized quaternion values that are subsequently normalized by dividing by their L2 norm. The quaternion representation avoids the discontinuities and singularities inherent in Euler angle parameterizations while providing a compact four-dimensional representation compared to nine-dimensional rotation matrix representations.

The translation vector t equals open bracket t subscript x, t subscript y, t subscript z close bracket specifies the position of the camera center in the world coordinate frame, which is defined as the coordinate system of the first input camera. For the first camera, the translation is fixed to the zero vector open bracket 0, 0, 0 close bracket since it defines the origin of the world frame. For subsequent cameras, the translation is predicted directly from the camera token through the linear projection. The translation values are expressed in normalized units where the average distance of scene points from the origin equals one, as established through the coordinate normalization applied during training.

The field of view parameters f equals open bracket f subscript x, f subscript y close bracket encode the horizontal and vertical angular extent of the camera frustum. These parameters relate to the camera intrinsic matrix through the focal lengths f subscript x multiplied by width divided by 2 and f subscript y multiplied by height divided by 2, where width and height denote the image dimensions. The system assumes that the principal point lies at the image center, which proves accurate for most consumer cameras and simplifies the parameterization by eliminating two additional degrees of freedom. The field of view prediction enables the network to handle cameras with different zoom settings or lens configurations without requiring manual calibration.

The camera prediction for the first frame exhibits special handling to establish the reference coordinate frame. The rotation quaternion for the first camera is fixed to open bracket 0,0,0,1 close bracket representing the identity rotation, and the translation is fixed to open bracket 0,0,0 close bracket as mentioned above. Only the field of view parameters are predicted for the first camera. This constraint ensures that all geometric quantities are expressed in a consistent coordinate frame defined by the first camera's pose, eliminating the ambiguity inherent in reconstructing scenes up to arbitrary similarity transformations.

The camera head training employs a loss function that compares predicted camera parameters to ground truth annotations using the Huber loss criterion. For camera i, the loss equals the Huber loss of the difference between predicted quaternion q subscript i hat and ground truth quaternion q subscript i, plus the Huber loss of the difference between predicted translation t subscript i hat and

ground truth translation t subscript i, plus the Huber loss of the difference between predicted field of view f subscript i hat and ground truth field of view f subscript i. The Huber loss combines quadratic penalties for small errors with linear penalties for large errors, providing robustness to outlier annotations while maintaining strong gradients near the optimum. The Huber loss of a residual r is defined as r squared divided by 2 when the absolute value of r is less than threshold epsilon, and epsilon multiplied by the quantity absolute value of r minus epsilon divided by 2 when the absolute value of r exceeds epsilon, where epsilon equals 1.0 in the present implementation.

The camera parameters enable numerous downstream operations within the metaverse system. The rotation and translation define the transformation from world coordinates to camera coordinates through the mapping that sends a three-dimensional point p equals open bracket p subscript x, p subscript y, p subscript z close bracket in world coordinates to camera coordinates p prime equals R multiplied by open parenthesis p minus t close parenthesis, where R denotes the rotation matrix corresponding to quaternion q. The rotation matrix R is computed from the quaternion components according to the standard formula where R subscript 1,1 equals 1 minus 2 times open parenthesis q subscript 2 squared plus q subscript 3 squared close parenthesis, R subscript 1,2 equals 2 times open parenthesis q subscript 1 multiplied by q subscript 2 minus q subscript 0 multiplied by q subscript 3 close parenthesis, and so forth following the quaternion-to-matrix conversion formulas.

The perspective projection from camera coordinates to image coordinates applies the pinhole camera model, mapping camera-coordinate point p prime equals open bracket p prime subscript x, p prime subscript y, p prime subscript z close bracket to image coordinates y equals open bracket y subscript x, y subscript y close bracket where y subscript x equals focal length subscript x multiplied by p prime subscript x divided by p prime subscript z plus principal point subscript y, and y subscript y equals focal length subscript y multiplied by p prime subscript y divided by p prime subscript z plus principal point subscript y. The focal lengths are computed from the predicted field of view through focal length subscript x equals width divided by 2 divided by the tangent of f subscript x divided by 2, and focal length subscript y equals height divided by 2 divided by the tangent of f subscript y divided by 2. The principal point is assumed to equal open bracket width divided by 2, height divided by 2 close bracket.

The prediction of depth maps and point clouds requires dense outputs at the pixel level, contrasting with the camera parameters that require only a single vector per image. To generate dense predictions, the system processes the output image tokens from the twenty-fourth alternating attention block through a Dense Prediction Transformer head, specifically employing the DPT architecture introduced by Ranftl et al. in the paper titled Vision Transformers for Dense Prediction published in the proceedings of the International Conference on Computer Vision 2021. The DPT architecture progressively upsamples the token representations to generate pixel-resolution output maps while incorporating multi-scale features from different network depths.

The DPT head extracts intermediate token representations from the fourth, eleventh, seventeenth, and twenty-third alternating attention blocks, providing features at different levels of semantic abstraction and spatial resolution. The tokens from earlier blocks retain fine spatial details corresponding to local texture and edges, while tokens from later blocks capture global semantic context and geometric relationships. The multi-scale extraction enables the DPT head to combine precise localization with semantic understanding, generating depth maps that exhibit sharp discontinuities at object boundaries while respecting global geometric constraints.

The DPT architecture processes each set of intermediate tokens through a reassembly operation that converts the one-dimensional token sequence back into a two-dimensional spatial grid matching the image structure. For tokens from block b, the reassembly operation first applies a linear projection to map the 1024-dimensional token representations to 256 dimensions, reducing computational cost in subsequent operations. The projected tokens are then reshaped from sequence dimension K by feature dimension 256 to spatial dimensions height divided by 14 by width divided by 14 by feature dimension 256, where the spatial dimensions correspond to the patch grid structure established during initial tokenization.

Following reassembly, each feature map undergoes bilinear upsampling to a common spatial resolution, specifically upsampling to dimensions equal to one-fourth of the original image resolution. This upsampling employs bilinear interpolation that computes each output pixel as a weighted average of the four nearest input pixels, where weights are determined by the proximity of the output location to each input location. The bilinear upsampling provides smooth interpolation that avoids the checkerboard artifacts that would arise from nearest-neighbor upsampling while maintaining computational efficiency compared to learned upsampling through transposed convolutions.

The four upsampled feature maps, corresponding to features extracted from blocks four, eleven, seventeen, and twenty-three, are concatenated along the channel dimension to produce a feature tensor with spatial dimensions height divided by 4 by width divided by 4 and channel dimension 1024 equal to four times 256. This concatenated representation undergoes processing through a sequence of convolutional layers that progressively reduce the channel dimension while increasing the spatial resolution. The first convolutional layer applies 512 filters of size 3 by 3 with stride 1 and padding 1, reducing channels from 1024 to 512 while maintaining spatial dimensions through the padding. A ReLU nonlinearity follows the convolution, introducing nonlinear processing capacity.

The feature map then undergoes bilinear upsampling by a factor of two, increasing spatial dimensions to height divided by 2 by width divided by 2. A second convolutional layer applies 256 filters of size 3 by 3, reducing channels from 512 to 256. After another ReLU and factor-of-two upsampling, a third convolutional layer with 128 filters reduces channels to 128, bringing the spatial resolution to the full image dimensions of height by width. This progressive upsampling and channel reduction generates a dense feature map F with dimensions height by width by 128 that encodes both fine spatial details and semantic context.

The dense feature map F serves as input to multiple task-specific prediction heads that generate depth maps, point maps, and tracking features. Each prediction head applies a final 3 by 3 convolutional layer that maps the 128-dimensional features to the appropriate output dimension for that task. The depth prediction head applies a single-channel convolution producing output dimension 1, generating a raw depth value for each pixel. The point map prediction head applies a three-channel convolution producing output dimension 3, generating x, y, z world coordinates for each pixel. The tracking feature head applies a C-channel convolution where C equals 128, generating feature descriptors for correspondence matching.

In addition to the primary predictions, the system generates uncertainty estimates that quantify the reliability of depth and point map predictions at each pixel. The uncertainty heads apply separate 1-channel convolutions to the dense feature map F, outputting pixel-wise variance estimates sigma squared subscript D for depth predictions and sigma squared subscript P for point map predictions. The variance predictions undergo exponential transformation to ensure positivity, computing uncertainty as the exponential of the raw network output. These uncertainty estimates weight the contribution of each pixel to the training loss, enabling the network to indicate when predictions are unreliable due to occlusion, lack of texture, or other factors.

The depth map predictions D with dimensions height by width represent the distance from each pixel to the corresponding three-dimensional scene point along the camera ray direction. The depth values are expressed in normalized units where the average scene depth equals one, consistent with the coordinate normalization applied to ground truth data during training. The depth map enables numerous applications including collision detection, physics simulation, and view-dependent rendering effects such as depth of field.

The point map predictions P with dimensions 3 by height by width represent the three-dimensional world coordinates of the scene point visible at each pixel. Critically, the point map is viewpoint-invariant, meaning that the predicted coordinates are expressed in the world reference frame defined by the first camera rather than in each camera's local coordinate system. This viewpoint invariance enables direct comparison of point predictions from different input frames, facilitating multi-view consistency checking and point cloud fusion. For a pixel at location y equals open bracket y subscript x, y subscript y close bracket in image i, the point map provides world coordinates P subscript i open parenthesis y close parenthesis equals open bracket P subscript i, open parenthesis y close parenthesis, P subscript i,y open parenthesis y close parenthesis, P subscript i,z open parenthesis y close bracket.

The relationship between depth maps and point maps follows from the camera geometry. Given depth value D subscript i open parenthesis y close parenthesis and camera parameters g subscript i equals open bracket q subscript i, t subscript i, f subscript i close bracket, the corresponding world-coordinate point can be computed through unprojection and coordinate transformation. First, the pixel location y is unprojected to camera coordinates using the inverse perspective projection, yielding camera-coordinate point p prime equals open bracket open parenthesis y subscript x minus principal point subscript x close parenthesis multiplied by D subscript i open parenthesis y close parenthesis divided by focal length subscript x, open parenthesis y subscript y minus principal point subscript y close parenthesis divided by focal length subscript i open parenthesis y close parenthesis close bracket. This camera-coordinate point is then transformed to world coordinates through p equals R subscript i transpose multiplied by p prime plus t subscript i, where R subscript i denotes the rotation matrix corresponding to quaternion q subscript i

During training, the system supervises both depth maps and point maps with separate loss terms, despite the geometric relationship between them. This redundant supervision improves learning dynamics by providing complementary gradient signals. The depth supervision operates in the metric space of distances, while point map supervision operates in the three-dimensional world coordinate space, emphasizing different aspects of geometric accuracy. The empirical results demonstrate that joint supervision of related quantities yields better performance than supervising only a minimal set of independent parameters.

During inference, the system can compute point maps either directly from the dedicated point map prediction head or indirectly by combining depth map predictions with camera parameter predictions through the unprojection and transformation described above. The experimental evaluation reveals that the indirect computation through depth and camera predictions yields higher accuracy than the direct point map prediction, despite both being supervised during training. This superiority of the decomposed prediction likely arises because depth prediction and camera prediction constitute simpler subtasks than direct point map prediction, enabling the network to achieve better accuracy on each component.

The tracking feature predictions T with dimensions C by height by width provide dense feature descriptors that enable establishing correspondences between pixels across different frames. The feature dimension C equals 128, providing sufficient capacity to discriminate between different scene locations while remaining computationally tractable for correlation volume computation. The tracking features are designed to be invariant to viewpoint changes, lighting variations, and other appearance transformations that preserve the identity of the underlying three-dimensional point.

The tracking functionality operates through a separate module that processes the dense tracking features T subscript i generated by the DPT head for each input frame. Given a query point y subscript q in a query frame I subscript q, the tracking module identifies the corresponding points in all other frames, establishing dense correspondences that enable applications such as object manipulation, camera pose refinement, and dynamic scene understanding.

The tracking architecture follows the CoTracker2 design introduced by Karaev et al. in the paper titled CoTracker: It is Better to Track Together published at arXiv preprint arXiv:2307.07635 in 2023. The tracking module accepts as input the query point location y subscript q along with the dense tracking features T subscript i for all N input frames. The module outputs predicted point locations y hat subscript j,i for each query point j in each frame i, along with visibility predictions v hat subscript j,i indicating whether query point j is visible in frame i

The tracking process begins by extracting the feature descriptor for each query point through bilinear sampling of the query frame's tracking feature map. For query point y subscript q equals open bracket y subscript q,x, y subscript q,y close bracket in query frame q, the feature descriptor f subscript q is computed as a bilinear weighted combination of the four feature vectors at integer pixel locations surrounding y subscript q. Specifically, let y subscript q,x equals floor open parenthesis y subscript q,x close parenthesis plus fraction alpha subscript x and y subscript q,y equals floor open parenthesis y subscript q,y close parenthesis plus fraction alpha subscript y, where floor denotes the floor function and alpha subscript x, alpha subscript y in the interval open bracket $0,\,1$ close parenthesis denote the fractional parts. The bilinearly sampled feature equals the sum over delta subscript x in open brace 0, 1 close brace and delta subscript y in open brace 0, 1 close brace of the product of weight w subscript delta x, delta y and feature T subscript q open bracket colon, floor open parenthesis y subscript q,y close parenthesis plus delta subscript y, floor open parenthesis y subscript q,x close parenthesis plus delta subscript x close bracket, where the weight w subscript 0,0 equals open parenthesis 1 minus alpha subscript x close parenthesis multiplied by open parenthesis 1 minus alpha subscript y close parenthesis, weight w subscript 1,0 equals alpha subscript x multiplied by open parenthesis 1 minus alpha subscript y close parenthesis, weight w subscript 0,1 equals open parenthesis 1 minus alpha subscript x close parenthesis multiplied by alpha subscript y, and weight w subscript 1,1 equals alpha subscript x multiplied by alpha subscript v.

The extracted query feature f subscript q with dimension 128 is then correlated with the tracking features from all other frames to identify candidate correspondences. For target frame i, the correlation map C subscript i is computed as the inner product between the query feature f subscript q and the tracking feature at each spatial location in frame i. Mathematically, the correlation at pixel location y equals open bracket y subscript x, y subscript y close bracket in frame i equals the dot product of f subscript q and T subscript i open bracket colon, y subscript y, y subscript x close bracket, summing over the feature dimension. The resulting correlation map has dimensions height by width, with high values indicating strong similarity between the query feature and the

The correlation maps from all frames are processed jointly through a sequence of transformer layers that enable reasoning about geometric relationships between correspondences in different frames. The correlation maps are first converted to token sequences by patchifying with patch size 4 by 4, reducing spatial resolution while maintaining computational tractability. Each 4 by 4 patch is converted to a token by applying a linear projection from dimension 16 to dimension 384. The resulting token sequences from all frames, each with length height divided by 4 multiplied by width divided by 4, are concatenated and processed through eight self-attention layers with six attention heads each.

The self-attention processing enables the tracking module to exploit multi-view geometric constraints when establishing correspondences. For example, if a query point tracks to a particular location in one frame, epipolar geometry constrains the possible correspondences in other frames to lie along specific curves. The self-attention layers can learn to enforce such constraints by attending to tokens from multiple frames simultaneously, suppressing inconsistent correspondences and strengthening geometrically coherent ones.

Following the self-attention processing, the refined tokens are projected back to spatial correlation maps through a transpose of the patchification operation. Each token is linearly projected from dimension 384 to dimension 16, then reshaped to a 4 by 4 spatial patch. The patches are assembled into correlation maps of dimensions height by width through spatial arrangement, with bilinear upsampling applied to restore the full image resolution if needed. These refined correlation maps incorporate global geometric context beyond what local correlation alone could provide.

The final correspondence prediction extracts the location of maximum correlation in each refined correlation map. For target frame i, the predicted correspondence location y hat subscript i is computed as the argmax over all

pixel locations y of the refined correlation C subscript i prime at location y. To achieve sub-pixel accuracy, the system performs quadratic interpolation around the maximum correlation location. Specifically, let y subscript max denote the integer pixel location of the maximum correlation. The sub-pixel offset delta is computed by fitting a quadratic function to the correlation values in a 3 by 3 window around y subscript max and finding the location of the quadratic's maximum. This yields a sub-pixel correspondence estimate y hat subscript i equals y subscript max plus delta.

The visibility prediction determines whether each query point is visible in each target frame, handling occlusions that arise when objects move behind other surfaces or exit the camera field of view. The visibility prediction employs a separate classification head that processes the refined correlation maps through a small convolutional network followed by sigmoid activation. For each query point j and target frame i, the visibility classifier outputs a probability v hat subscript j,i in the interval open parenthesis 0, 1 close parenthesis indicating the likelihood that point j is visible in frame i. A threshold of 0.5 determines the binary visibility decision.

The tracking module training employs a combination of correspondence loss and visibility loss. The correspondence loss for query point j in target frame i equals the Euclidean distance between predicted location y hat subscript j,i and ground truth location y subscript j,i, computed as the square root of the sum of the squared differences in x and y coordinates. The total correspondence loss sums these distances over all query points and all frames. The visibility loss employs binary cross-entropy between predicted visibility probabilities v hat subscript j,i and ground truth binary visibility labels v subscript j,i, computed as negative v subscript j,i multiplied by logarithm of v hat subscript j,i minus the quantity one minus v subscript j,i multiplied by logarithm of quantity one minus v hat subscript j,i. The total tracking loss combines the correspondence loss and visibility loss with equal weighting, then downweights the combined tracking loss by factor lambda equals 0.05 when adding it to the overall multi-task loss.

The ground truth correspondences for training are established through geometric reprojection of depth maps. For a query point y subscript q in frame q with ground truth depth D subscript q open parenthesis y subscript q close parenthesis, the corresponding three-dimensional world point is computed through the unprojection formula described previously. This world point is then projected into target frame i using the ground truth camera parameters g subscript i, yielding predicted pixel location y prime subscript i. The ground truth correspondence y subscript i is set equal to y prime subscript i only if the predicted depth at that location, obtained by reprojecting the world point into frame i, matches the ground truth depth map D subscript i at location y prime subscript i within a threshold tolerance. If the depths differ substantially, the correspondence is considered invalid due to occlusion, and the visibility label v subscript i is set to zero.

The training procedure processes data from a diverse collection of seventeen datasets spanning indoor scenes, outdoor environments, synthetic renderings, and real-world sensor captures. The datasets include Co3Dv2 comprising 37,200 scenes of 50 object categories captured from multiple viewpoints, BlendMVS containing 113 high-resolution scenes of architectural structures, DL3DV providing 140,000 video sequences with depth annotations, MegaDepth containing 196 scenes from large-scale structure-from-motion reconstruction of tourist landmarks, Kubric generating synthetic videos with perfect ground truth, WildRGB offering 318 videos of natural environments, ScanNet containing 1,513 indoor room scans with RGB-D data, HyperSim providing 461 photorealistic synthetic indoor scenes, Mapillary contributing street-level imagery from diverse geographic locations, Habitat offering simulated indoor environments, Replica containing 18 high-fidelity reconstructions of indoor spaces, MVS-Synth generating multi-view stereo training data, PointOdysse providing synthetic videos with dense point tracking annotations, Virtual KITTI containing synthetic driving sequences, Aria Synthetic Environments offering ego-centric captures in simulated spaces, Aria Digital Twin providing real-world ego-centric scans with precise localization, and a proprietary synthetic dataset of artist-created assets rendered from multiple viewpoints.

Each dataset contributes distinct characteristics to the training distribution. The Co3Dv2 dataset provides object-centric captures with controlled backgrounds, teaching the network to recognize and reconstruct compact objects from sparse viewpoints. The scenes typically contain 10 to 100 images captured around the object with varying distances and orientations. The BlendMVS dataset offers architectural structures with rich geometric detail including facades, interiors, and cultural heritage sites, exposing the network to large-scale environments where depth variation spans multiple orders of magnitude. The DL3DV dataset contributes temporal sequences captured during continuous camera motion, providing dense temporal correspondence that supplements the multi-view geometric supervision.

The MegaDepth dataset provides large-scale outdoor scenes reconstructed through structure-from-motion using thousands of tourist photographs per landmark. The camera poses and sparse three-dimensional points are estimated through incremental structure-from-motion using the COLMAP software, providing metric-scale geometric supervision. The dense depth maps are generated through multi-view stereo reconstruction, specifically using the COLMAP patch-match stereo implementation. These depth maps exhibit holes in regions lacking texture or suffering from occlusion, which are handled during training by masking the loss at invalid depth pixels.

The Kubric dataset generates synthetic videos through procedural scene construction and physics simulation using the Blender rendering engine. The

scenes contain collections of primitive shapes and asset library objects undergoing rigid and non-rigid motion under simulated physics. The perfect ground truth includes camera parameters, dense depth maps, optical flow, object segmentation, and point tracking annotations, enabling comprehensive multi-task supervision. The synthetic data proves particularly valuable for training the tracking module, as establishing dense ground truth correspondences in real-world data presents substantial challenges.

The ScanNet dataset provides RGB-D video sequences captured by handheld sensors scanning indoor rooms. The depth maps are captured directly by structured light sensors, providing metric-accurate geometric supervision without the ambiguities inherent in passive stereo reconstruction. The camera poses are estimated through RGB-D SLAM algorithms, registering frames to a consistent global coordinate system. The dataset includes scenes with substantial clutter, occlusion, and geometric complexity, teaching the network to handle challenging real-world conditions.

The training procedure samples batches by first selecting a dataset according to predefined weights that balance the contributions of different data sources. Each dataset receives approximately equal weight despite varying in size, preventing the largest datasets from dominating the training distribution. After selecting a dataset, a random scene is sampled uniformly from that dataset's training split. From the selected scene, between 2 and 24 frames are randomly sampled, with the number of frames varying across batches to teach the network to handle variable input sizes.

The total number of frames per batch is fixed at 48, meaning that if a batch samples 24 frames from one scene, it contains 2 scenes, whereas if it samples 2 frames per scene, it contains 24 scenes. This variable frames-per-scene sampling exposes the network to both dense multi-view scenarios where many frames observe the same scene and sparse scenarios where only a few views are available. The sampling strategy excludes scenes containing fewer than 24 total frames to ensure sufficient frames are available for the maximum sampling density.

The sampled frames undergo extensive augmentation to improve generalization. The first augmentation applies isotropic resizing such that the longer image dimension equals 518 pixels, preserving the aspect ratio. The shorter dimension is then randomly cropped to a size between 168 and 518 pixels, where the crop size must be a multiple of 14 pixels to align with the patch size used by DINOv2 tokenization. The crop location is chosen to center approximately on the principal point when possible, ensuring that the image center remains near the geometric center of the cropped region.

Aggressive color augmentation is applied independently to each frame within a scene, simulating variations that might arise from automatic exposure adjustment, white balance changes, or different camera response curves. The color jittering modifies brightness by a factor between 0.8 and 1.2, contrast by a factor between 0.8 and 1.2, and hue by an offset between negative 0.1 and positive 0.1. These multiplicative and additive transformations substantially alter the color appearance while preserving the underlying geometric structure that the network must learn to extract.

Random Gaussian blur is applied to frames with probability 0.5, using a kernel size randomly selected from the set consisting of 3, 5, 7, 9, 11 pixels and a Gaussian standard deviation randomly selected from the interval 0.1 to 2.0. The blur augmentation teaches the network to tolerate focus variations, motion blur, and other degradations that arise in real-world captures. The randomized kernel size and standard deviation expose the network to a range of blur characteristics

Grayscale conversion is applied with probability 0.2, removing all color information and forcing the network to rely solely on brightness and texture cues. The grayscale augmentation prevents the network from becoming overly dependent on color features that might not generalize across different illumination conditions or camera sensors. The relatively low probability of 0.2 preserves color information in most training examples while ensuring regular exposure to monochrome inputs.

The geometric annotations including depth maps and point maps undergo the same geometric transformations as the image data, ensuring consistency between inputs and supervision signals. When an image is cropped, the corresponding depth map and point map are cropped to the same region. When an image is resized, the depth values are resampled through bilinear interpolation while being scaled by the resize factor to maintain metric accuracy. The point map coordinates are transformed according to the camera parameters of the cropped and resized image, ensuring that the world coordinates remain consistent despite the image transformations.

The ground truth coordinate normalization establishes a canonical scale by computing the average Euclidean distance from all valid three-dimensional points in the scene to the origin defined by the first camera center. Mathematically, let P equal the set of all three-dimensional points obtained by unprojecting all pixels with valid depth across all frames in the scene. The normalization scale s is computed as the sum over all points p in P of the L2 norm of p divided by the cardinality of P. All ground truth point map coordinates are then divided by s, all ground truth depth values are divided by s, and all ground truth camera translations are divided by s. This normalization ensures that the average scene depth equals one in normalized units, providing a consistent scale across scenes of different physical sizes.

Critically, the network predictions are not subjected to any normalization during inference. The network is trained to directly output normalized coordinates matching the ground truth normalization, learning the appropriate scale from the statistics of the training data. This approach contrasts with methods that apply test-time normalization to network outputs, which can introduce artifacts when the test data distribution differs from training.

The network training employs the AdamW optimizer, which combines the adaptive learning rate mechanism of Adam with decoupled weight decay regularization. The AdamW optimizer maintains exponentially decaying moving averages of gradient first moments and second moments for each parameter. Let theta subscript t denote the parameter vector at training iteration t, g subscript t denote the gradient of the loss with respect to parameters at iteration t, m subscript t denote the first moment estimate, and v subscript t denote the second moment estimate.

The first moment estimate is updated according to m subscript t equals beta subscript 1 multiplied by m subscript t minus 1 plus quantity one minus beta subscript 1 multiplied by g subscript t, where beta subscript 1 equals 0.9 represents the exponential decay rate for the first moment. The second moment estimate is updated according to v subscript t equals beta subscript 2 multiplied by v subscript t minus 1 plus quantity one minus beta subscript 2 multiplied by g subscript t element-wise squared, where beta subscript 2 equals 0.999 represents the decay rate for the second moment. These moment estimates are biascorrected through m hat subscript t equals m subscript t divided by quantity one minus beta subscript 1 raised to power t and v hat subscript t equals v subscript t divided by quantity one minus beta subscript one minus beta subscript 2 raised to power t.

The parameter update applies the adaptive learning rate derived from the moment estimates while adding decoupled weight decay. The update rule is theta subscript t equals theta subscript t minus 1 minus alpha subscript t multiplied by m hat subscript t divided by square root of v hat subscript t plus epsilon minus alpha subscript t multiplied by lambda subscript decay multiplied by theta subscript t minus 1, where alpha subscript t denotes the learning rate at iteration t, epsilon equals 1 times 10 raised to negative 8 provides numerical stability, and lambda subscript decay equals 0.01 controls the weight decay strength. The first term implements the adaptive gradient update based on moment estimates, while the second term implements L2 regularization through direct decay of parameter magnitudes

The learning rate alpha subscript t follows a cosine annealing schedule with linear warmup. For the first 8,000 iterations constituting the warmup phase, the learning rate increases linearly from 0 to the peak value alpha subscript peak equals 0.0002 according to alpha subscript t equals alpha subscript peak multiplied by t divided by 8,000. For iterations t exceeding 8,000, the learning rate follows a cosine decay computed as alpha subscript t equals alpha subscript peak multiplied by 0.5 multiplied by quantity one plus cosine of pi multiplied by quantity t minus 8,000 divided by quantity 152,000, where 152,000 equals 160,000 total iterations minus 8,000 warmup iterations. The cosine schedule smoothly reduces the learning rate to near zero by the final iteration, enabling fine-tuned convergence to a local minimum.

The training runs for a total of 160,000 iterations processing batches of 48 frames each. Given that training employs 64 NVIDIA A100 GPUs in parallel through distributed data parallelism, the effective batch size equals 48 multiplied by 64 equals 3,072 frames per global iteration. The distributed training employs the PyTorch DistributedDataParallel wrapper, which replicates the model on each GPU and synchronizes gradients across GPUs before each parameter update through an all-reduce collective communication operation.

The gradient synchronization employs the NCCL library optimized for NVIDIA GPU interconnects, achieving high bandwidth collective operations. The all-reduce operation computes the sum of gradients from all 64 GPUs for each parameter, then divides by 64 to obtain the average gradient. This averaged gradient is used for parameter updates on all GPUs, ensuring that all model replicas remain synchronized despite processing different data on each GPU. The communication overhead is overlapped with backward pass computation by initiating all-reduce operations for earlier layer gradients while later layer gradients are still being computed.

To prevent training instability arising from occasional large gradients, the system applies gradient norm clipping with threshold value 1.0. Before each parameter update, the global gradient norm is computed as the square root of the sum over all parameters p of the squared L2 norm of the gradient with respect to p. If this global norm exceeds the threshold 1.0, all gradients are scaled by the factor 1.0 divided by global norm, ensuring that the maximum gradient norm equals exactly 1.0. This clipping prevents explosive parameter updates that would destabilize training when encountering outlier examples or difficult scenes.

The training employs mixed-precision computation using the bfloat16 floating-point format for activations and gradients, while maintaining float32 precision for parameter values and optimizer state. The bfloat16 format represents numbers with 8 exponent bits and 7 mantissa bits, providing the same exponent range as float32 but with reduced precision. This format proves well-suited for deep learning because the wide exponent range prevents overflow and underflow issues, while the reduced mantissa precision has minimal impact on convergence. The mixed-precision training reduces memory consumption by approximately half and accelerates computation on GPUs with specialized bfloat16 arithmetic units

Gradient checkpointing is employed to reduce memory consumption during backpropagation by storing only a subset of intermediate activations and recomputing the others as needed during the backward pass. Specifically, the activations are checkpointed at the output of every fourth alternating attention block, storing activations from blocks 4, 8, 12, 16, 20, and 24 while discarding activations from intermediate blocks. During backpropagation, when gradients with respect to activations from a non-checkpointed block are needed, a forward pass through that block is recomputed using the checkpointed activations from the previous checkpoint. This approach increases computation by approximately 25 percent while reducing memory consumption by approximately 60 percent, enabling larger batch sizes or higher-resolution inputs.

The metaverse system integrates the trained transformer network into a client-server architecture supporting real-time collaborative three-dimensional experiences. Users access the metaverse through client applications running on personal computers, virtual reality headsets such as the Meta Quest 3 or Quest Pro, or mobile devices including smartphones and tablets. The client applications capture visual input through device cameras, transmit images to cloud-based inference servers, receive geometric predictions, and render immersive three-dimensional environments.

The client application implements a capture interface enabling users to photograph their physical surroundings from multiple viewpoints. For desktop and mobile devices, the interface displays a live camera feed with overlay graphics indicating the captured frames and encouraging users to move the camera to cover the scene from diverse angles. The interface suggests target viewpoints through augmented reality indicators, such as translucent spheres positioned at locations that would provide informative views based on the already-captured frames. The suggestion algorithm analyzes the camera pose estimates from already-processed images and identifies viewing directions that maximize the volume of unobserved space or improve the triangulation geometry for existing points.

For virtual reality headsets, the capture interface leverages the headset's built-in cameras to acquire images while the user naturally explores the physical space. The Meta Quest 3 provides four wide-angle monochrome cameras positioned around the headset for inside-out tracking, along with two RGB cameras for video passthrough. The metaverse application accesses the RGB camera streams and automatically selects frames for processing based on the headset's tracked pose. Frames are selected when the headset pose differs sufficiently from previously selected frames, ensuring adequate baseline for triangulation while avoiding redundant captures of similar viewpoints. The automatic selection removes the need for explicit user action, enabling seamless environment capture during natural movement.

The captured images are transmitted from the client device to cloud-based inference servers running the transformer network. The transmission employs JPEG compression with quality factor 90 to balance image quality against bandwidth requirements, reducing data size by approximately 10-fold compared to uncompressed RGB images while introducing only minor compression artifacts. For mobile devices on cellular connections, the quality factor is reduced to 80 when bandwidth is limited, adaptively trading off image quality for reduced transmission time.

The inference servers run the transformer network on NVIDIA H100 GPUs equipped with 80 gigabytes of high-bandwidth memory. Each server GPU processes inference requests from multiple users concurrently through batch processing, grouping requests to achieve high hardware utilization. The server software implements a queuing system that accumulates requests until a batch size target of 8 requests is reached or a timeout of 200 milliseconds elapses, whichever occurs first. This batching strategy ensures low latency for individual users while maximizing throughput during high-load conditions.

The inference computation employs optimized CUDA kernels generated through the PyTorch TorchScript compiler, which analyzes the network graph and fuses operations to minimize memory transfers and kernel launch overhead. The flash attention operations utilize the implementation from the flash-attn library version 3, which tiles the attention computation to exploit the memory hierarchy of the H100 GPU. The tiling reduces DRAM bandwidth requirements by approximately 4-fold compared to naive attention implementations, enabling real-time processing of high-resolution inputs.

Following inference, the server transmits the geometric predictions back to the client device. The camera parameters are encoded as 9 floating-point values per frame, requiring only 36 bytes per frame assuming single-precision encoding. The depth maps are compressed through a custom codec that exploits the smoothness of depth surfaces, achieving compression ratios of approximately 20:1 while introducing depth errors below 1 percent. The codec applies a discrete cosine transform to small depth patches, quantizes the transform coefficients, and entropy-encodes the quantized values. The point clouds are transmitted only for keyframes selected by the server, as point clouds for other frames can be reconstructed client-side by unprojecting the depth maps using the camera parameters.

The client application receives the geometric predictions and integrates them into a unified three-dimensional scene representation. The scene representation employs a truncated signed distance function volumetric representation, discretizing space into a regular grid of voxels where each voxel stores the signed distance to the nearest surface. The TSDF representation is updated incrementally as new geometric predictions arrive, fusing depth maps from multiple frames by averaging the signed distance contributions from each

observation. The TSDF enables efficient surface extraction through the marching cubes algorithm, generating a triangle mesh suitable for real-time rendering.

The mesh extraction runs asynchronously on a background thread, generating updated geometry without blocking the rendering loop. The marching cubes algorithm processes each 2-by-2-by-2 cube of voxels, identifying surface-intersecting cubes where the signed distance changes sign across vertices. For each surface-intersecting cube, the algorithm generates between 1 and 5 triangles approximating the iso-surface where the signed distance equals zero. The triangle vertices are computed through linear interpolation between voxel corners, yielding smooth surface approximations.

The extracted mesh undergoes simplification to reduce polygon count while preserving geometric accuracy. The simplification employs the quadric error metric algorithm, which iteratively collapses edges to merge adjacent vertices while minimizing the squared distance of the simplified mesh from the original. The algorithm maintains a priority queue of edges sorted by the error introduced by collapsing each edge, repeatedly collapsing the edge with minimum error until a target polygon count is reached. The simplification reduces triangle count by approximately 70 percent, enabling real-time rendering on mobile devices while maintaining visual fidelity.

The mesh texturing employs a per-vertex color representation, where each vertex stores an RGB color computed by averaging the colors from all input images that observe the vertex location. For vertex v with three-dimensional position p subscript v, the color is computed as the sum over all frames i where p subscript v projects into the image bounds of the image color I subscript i at the projected location, divided by the number of frames contributing to the sum. The vertex colors are interpolated across triangle faces during rasterization, providing smooth color variation without requiring explicit texture coordinate parameterization.

The client application renders the reconstructed environment using the OpenGL graphics API on desktop and mobile devices or the Vulkan API on virtual reality headsets. The rendering employs a forward rendering pipeline where all geometry is rasterized in a single pass, with lighting computed per-fragment using Phong shading. The fragment shader evaluates diffuse and specular lighting contributions from up to three directional light sources, whose directions and colors are estimated from the environment capture.

The lighting estimation analyzes the reconstructed geometry and input images to infer the dominant light directions and colors. The estimation algorithm identifies the brightest regions in the input images, computes the three-dimensional surface orientations at those locations from the depth maps, and infers the light direction as the reflection of the viewing direction about the surface normal. Multiple light candidates from different images are clustered using k-means with k equals 3, identifying the three most prominent light directions. The color of each light is estimated as the median color of bright surface regions consistent with that light direction.

For virtual reality rendering, the application generates stereo image pairs with appropriate inter-pupillary distance to create depth perception. The left and right eye viewpoints are separated by 63 millimeters horizontally, matching the average human inter-pupillary distance. Each eye viewpoint renders the scene from a slightly different camera position, with the view frustum rotated to converge at a focus distance of 2 meters. The stereo rendering doubles the polygon processing cost, but the simplified mesh and optimized rendering pipeline maintain frame rates above 72 frames per second required for comfortable VR experiences on the Meta Quest 3.

The user interaction model enables natural manipulation of virtual objects through ray-casting from hand-held controllers or directly from hand tracking. The controller ray-cast computes a three-dimensional ray originating from the controller position and extending along the controller's pointing direction. The ray-cast intersects the ray with the reconstructed scene geometry, identifying the nearest surface point within a maximum distance of 10 meters. The intersection employs a bounding volume hierarchy spatial acceleration structure, organizing triangles into a binary tree where each node stores an axis-aligned bounding box containing all descendant triangles.

When the user presses the controller trigger button while the ray intersects a surface, the system creates a constraint attaching the intersected point to the controller. As the user moves the controller while holding the trigger, the constraint moves the attached point to maintain a fixed offset from the controller position. If the attached point belongs to a virtual object that was previously inserted into the scene rather than reconstructed from the physical environment, the system computes a rigid transformation that moves the object to satisfy the constraint while minimizing distortion of the object's shape.

The object motion computation employs a least-squares optimization that finds the rotation and translation minimizing the sum of squared distances between the object's vertices and their target positions implied by user constraints. For an object with vertices V equals open brace v subscript 1, v subscript 2, up to v subscript n close brace and current transformation defined by rotation R and translation t, a new constraint specifies that vertex v subscript j should move to target position p subscript target. The optimization finds rotation R prime and translation t prime minimizing the sum of squared deviations from previous vertex positions for unconstrained vertices plus the squared deviation between the transformed position of v subscript j and p subscript target.

This optimization problem admits a closed-form solution through singular value decomposition when only a single constraint is active. The optimal translation t prime equals p subscript target minus R prime multiplied by v subscript j, and the optimal rotation R prime equals the rotation component of the polar decomposition of the matrix mapping the initial object coordinate frame to an intermediate frame aligned with the constraint. When multiple constraints are active simultaneously, the system solves the least-squares problem through iterative refinement using the Gauss-Newton method.

The collaborative multi-user experience enables multiple users to view and interact with the same virtual environment simultaneously. Each user captures images of the physical space from their own viewpoint, and the server processes all users' images to generate compatible geometric predictions through the shared world coordinate frame. The server designates one user as the reference user whose first frame establishes the world coordinate frame, and all other users' predictions are expressed relative to this reference frame.

The coordinate frame alignment across users employs the predicted point clouds to compute similarity transformations relating each user's local frame to the reference frame. For a non-reference user whose predictions are initially expressed in that user's local frame, the system identifies point cloud correspondences between the user's prediction and the reference user's prediction through a combination of geometric proximity and feature similarity. The RANSAC algorithm selects random subsets of three correspondences, computes the similarity transformation implied by each subset through the closed-form three-point solution, and evaluates the number of additional correspondences that are consistent with that transformation

After identifying a consistent subset of correspondences, the system computes the optimal similarity transformation through the Umeyama algorithm. The Umeyama algorithm takes as input two sets of three-dimensional points P equals open brace p subscript 1, up to p subscript m close brace and Q equals open brace q subscript 1, up to q subscript m close brace representing corresponding points in the two coordinate frames. The algorithm computes the rotation R, translation t, and scale s minimizing the sum over all correspondences i of the squared Euclidean distance between s multiplied by R multiplied by p subscript i plus t and q subscript i.

The Umeyama solution first centers both point sets by subtracting their respective centroids, then computes the 3-by-3 matrix H equal to the sum over all correspondences i of the outer product of centered point p subscript i minus p subscript mean and centered point q subscript i minus q subscript mean. The singular value decomposition of H yields H equals U multiplied by Sigma multiplied by V transpose, where the optimal rotation equals V multiplied by diag open parenthesis 1, 1, determinant of V multiplied by U transpose close parenthesis multiplied by U transpose. The scale s equals the sum of singular values in Sigma divided by the sum of squared norms of centered p points, and the translation t equals q subscript mean minus s multiplied by R multiplied by p subscript mean.

The aligned predictions from all users are fused into a unified scene representation by merging their TSDF volumes. The fusion computes a weighted average of signed distance values from all users at each voxel location, where weights are proportional to the confidence of each user's prediction. The confidence is derived from the uncertainty estimates generated by the network during inference, with lower uncertainty yielding higher fusion weight. The weighted averaging reduces noise and fills holes by combining complementary observations from different viewpoints.

Beyond the core reconstruction functionality, the metaverse system supports extended applications that leverage the learned feature representations and geometric predictions. One important application is feed-forward novel view synthesis, which generates images of the scene from viewpoints not included in the input set. The novel view synthesis capability enables users to preview the scene from planned camera positions before physically moving to those locations, supporting applications such as photography planning, cinematography, and virtual tourism.

The novel view synthesis is implemented by fine-tuning the pretrained transformer network on a dataset of scenes with ground truth images from many viewpoints. The fine-tuning modifies the DPT prediction head to output RGB colors instead of depth values, while keeping the transformer backbone parameters initialized from the pretrained reconstruction model. The training employs the same alternating attention architecture, but the input now includes Plucker coordinate representations of the target viewpoints. The Plucker coordinates for a target viewpoint encode both the camera center position and the viewing direction for each pixel ray through a six-dimensional vector per pixel.

The Plucker representation for a ray with origin o and direction d is defined as the six-dimensional vector equal to open bracket d, o cross d close bracket where cross denotes the three-dimensional cross product. This representation remains invariant to parameterization changes along the ray and explicitly encodes the ray's closest point to the origin. The six Plucker values per pixel are arranged into a six-channel image that is tokenized through a convolutional layer with 14-by-14 kernel and stride 14, generating tokens analogous to the DINOv2 image tokens. These target view tokens are concatenated with the input image tokens and processed through the alternating attention backbone.

The novel view synthesis model is trained on the Google Scanned Objects dataset, which provides high-quality three-dimensional scans of approximately 1,000 objects captured through structured light scanning. Each object is rendered

from 50 random viewpoints using the Blender rendering engine with physically-based materials and lighting. The training samples 4 random viewpoints as input and 1 additional random viewpoint as the synthesis target, supervising the RGB output with L1 loss plus perceptual loss computed through a VGG network. The perceptual loss computes the L2 distance between VGG feature representations of the predicted and ground truth images, encouraging perceptually realistic synthesis even when pixel-level accuracy is limited.

The fine-tuning proceeds for 50,000 iterations with learning rate 0.0001, which is lower than the initial reconstruction training to avoid catastrophic forgetting of the pretrained features. The batch size is 32 scenes with 5 frames per scene, yielding 160 frames per batch. The training requires approximately 3 days on 8 A100 GPUs. The resulting model achieves peak signal-to-noise ratio of 30.41 decibels on the held-out test set, indicating high-quality synthesis despite using only 4 input views.

Another important downstream application is dynamic point tracking in videos containing non-rigid motion, extending beyond the static scene assumption underlying the reconstruction training. The dynamic tracking capability enables applications such as gesture recognition, activity understanding, and video editing through tracking-based object segmentation. The dynamic tracking is implemented by fine-tuning the tracking module on video datasets with ground truth point tracks across frames.

The fine-tuning employs the Kubric dataset, which generates synthetic videos with perfect tracking ground truth through rendering of three-dimensional scenes with known point correspondences. The Kubric scenes contain collections of objects undergoing rigid and non-rigid motion, including falling, rolling, deforming, and inter-penetrating dynamics simulated through physics engines. The tracking fine-tuning preserves the transformer backbone weights while allowing the tracking head to adapt to temporal motion patterns that differ from the multi-view static scenes seen during initial training.

The fine-tuning employs the CoTracker2 architecture directly without modification, taking as input 24 consecutive video frames and predicting tracks for 256 query points sampled on a regular grid in the first frame. The training supervises both the point locations and visibility predictions, using the same correspondence and visibility losses described previously. The fine-tuning runs for 20,000 iterations with learning rate 0.0001 and batch size 16 videos, requiring approximately 1 day on 8 A100 GPUs.

The resulting dynamic tracker is evaluated on the TAP-Vid benchmark, which provides three datasets testing different aspects of point tracking. The TAP-Vid-Kinetics dataset contains real-world videos from the Kinetics action recognition dataset, with point tracks annotated by human labelers through extensive manual effort. The TAP-Vid-RGB-Stacking dataset contains simulated robotic manipulation videos with synthetic tracking ground truth. The TAP-Vid-DAVIS dataset contains natural videos from the DAVIS video segmentation benchmark with manually annotated tracks.

The fine-tuned tracker achieves Average Jaccard scores of 57.2, 72.1, and 64.7 on Kinetics, RGB-Stacking, and DAVIS respectively, substantially outperforming the original CoTracker2 baseline which achieves 49.6, 67.4, and 61.8. The improvement demonstrates that the features learned by the reconstruction network transfer effectively to dynamic tracking, even though the reconstruction training exclusively used static scenes. The features presumably capture low-level visual patterns such as textures, edges, and corners that remain informative for tracking despite the domain shift to dynamic scenes.

The metaverse system integrates the dynamic tracking capability to support interaction with videos. Users can select points in video frames and the system automatically tracks those points throughout the sequence, enabling video-based object manipulation analogous to the static scene manipulation described previously. For example, a user can select multiple points on an object in a video, and the system tracks those points to estimate the object's rigid motion over time. This motion estimate enables applications such as motion-stabilized video playback, where the virtual camera follows the object to keep it centered and upright despite camera shake in the original video.

The metaverse system exhibits performance characteristics that enable real-time operation for typical usage scenarios. The inference time for processing a collection of input images scales approximately linearly with the number of frames, with each frame adding approximately 30 milliseconds to the total computation time on an NVIDIA H100 GPU. For a typical scene capture of 10 frames, the total inference time equals approximately 300 milliseconds, which is sufficiently fast for interactive use. The inference time includes the DINOv2 tokenization at 50 milliseconds total for 10 frames, the transformer backbone at 200 milliseconds, the camera head at 10 milliseconds, and the DPT heads at 40 milliseconds.

The memory consumption similarly scales with the number of frames, primarily due to the storage of attention key and value vectors across all tokens. For 10 input frames at 518-by-518 resolution yielding approximately 13,690 total tokens, the attention mechanism stores key and value vectors with total dimension 2,048 for each token across all 24 layers, consuming approximately 1.4 gigabytes. The activation storage for intermediate features adds approximately 0.6 gigabytes, and the model parameters consume 4.8 gigabytes, yielding a total memory footprint of approximately 6.8 gigabytes that fits comfortably within the 80-gigabyte capacity of the H100 GPU.

The scalability to very large numbers of frames is limited by the quadratic complexity of global self-attention, which computes pairwise attention weights between all token pairs. For N frames with K tokens per frame, the attention mechanism processes N multiplied by K total tokens, requiring computation and storage proportional to the square of N multiplied by K. For 100 frames, the token count reaches approximately 136,900, and the quadratic attention memory scales to approximately 140 gigabytes, exceeding the capacity of a single H100 GPU. However, the system employs flash attention optimizations that reduce memory by recomputing attention values during the backward pass rather than storing them, enabling processing of up to 200 frames within the 80-gigabyte memory budget.

The reconstruction accuracy is evaluated through comparison of predicted camera poses, depth maps, and point clouds against ground truth annotations from test datasets. The camera pose accuracy is quantified through the rotation and translation errors between predicted and ground truth poses. The rotation error is measured as the geodesic distance on the rotation group SO(3), computed as the angle of the rotation difference between predicted and ground truth orientations. The translation error is measured as the Euclidean distance between predicted and ground truth camera positions after normalizing both to unit scale through division by the average scene depth.

On the RealEstate10K dataset, which provides challenging wide-baseline internet video sequences, the metaverse system achieves median rotation error of 2.3 degrees and median translation error of 3.7 centimeters at normalized scale. These errors are substantially lower than those of prior methods including DUSt3R with median rotation error 5.1 degrees and median translation error 8.2 centimeters, and MASt3R with median rotation error 3.8 degrees and median translation error 5.4 centimeters. The improved accuracy enables more reliable reconstruction from sparse viewpoints, reducing the number of images users must capture to achieve satisfactory geometric quality.

The depth map accuracy is evaluated through comparison against ground truth depth from RGB-D sensors or laser scanners. The accuracy metric computes the percentage of pixels where the predicted depth differs from ground truth by less than a threshold, testing thresholds of 1.05, 1.10, and 1.25 representing 5 percent, 10 percent, and 25 percent relative error respectively. On the ScanNet dataset containing 1,513 indoor scenes, the metaverse system achieves accuracy of 87.3 percent, 94.2 percent, and 98.1 percent at the three thresholds respectively. These accuracy levels exceed those of specialist monocular depth estimation networks including MiDaS at 82.1 percent, 91.3 percent, 96.8 percent, despite the metaverse system jointly predicting multiple outputs rather than specializing exclusively on depth.

The point cloud accuracy is quantified through the Chamfer distance between predicted and ground truth point clouds. The Chamfer distance computes the sum of two directed distances: the average distance from each predicted point to the nearest ground truth point, called the accuracy term, plus the average distance from each ground truth point to the nearest predicted point, called the completeness term. Lower Chamfer distance indicates better geometric reconstruction. On the ETH3D benchmark containing high-quality terrestrial laser scans, the metaverse system achieves Chamfer distance of 0.677 combining accuracy 0.873 and completeness 0.482 measured in centimeters. This performance substantially exceeds DUSt3R at Chamfer distance 1.005 and MASt3R at 0.826, despite those methods employing expensive global alignment optimization while the metaverse system produces feed-forward predictions.

The tracking accuracy is evaluated through metrics defined by the TAP-Vid benchmark. The delta-visible-average metric computes the proportion of visible ground truth tracks that are correctly predicted to within a threshold distance, averaging over thresholds from 1 to 20 pixels. The occlusion accuracy metric computes the binary classification accuracy of visibility predictions, measuring what fraction of visibility labels are correct. The Average Jaccard metric combines tracking and visibility accuracy through the Jaccard index, which measures the intersection over union of the set of correctly tracked visible points. On the TAP-Vid-Kinetics benchmark containing challenging real-world action videos, the metaverse system achieves delta-visible-average of 69.0 percent, occlusion accuracy of 88.9 percent, and Average Jaccard of 57.2 percent.

The system exhibits strong generalization to data distributions not seen during training. The RealEstate10K evaluation tests generalization to internet videos, as the training data excludes the RealEstate10K dataset entirely. The system achieves rotation accuracy threshold AUC@30 of 85.3 percent on this unseen data, substantially exceeding the 76.4 percent achieved by MASt3R which was trained on overlapping data. This generalization capability arises from the diverse training data spanning synthetic and real-world scenes, indoor and outdoor environments, and different annotation modalities, teaching representations that capture fundamental geometric principles rather than dataset-specific patterns.

Theoretical Basis of the Present Invention

I. Transformer Architecture Foundation

Self-Attention Mechanism:

$$\operatorname{Attention}(Q,K,V) = \operatorname{softmax}\left(\frac{Q\,K^T}{\sqrt{d_k}}\right)V$$

where Q denotes the query matrix of dimension n by d_k , K denotes the key matrix of dimension m by d_k , V denotes the value matrix of dimension m by d_v , n represents the number of query tokens, m represents the number of key-value tokens, d_k represents the dimension of key and query vectors, d_v represents the dimension of value vectors, and the softmax operation is applied row-wise to normalize attention weights such that they sum to one across the key dimension.

Multi-Head Attention:

 $MultiHead(Q, K, V) = Concat(head_1, ..., head_h)W^O$

$$\mathsf{head}_i = \mathsf{Attention}(\mathit{QW}_i^\mathit{Q}, \mathit{KW}_i^\mathit{K}, \mathit{VW}_i^\mathit{V})$$

where h denotes the number of attention heads, \mathbf{W}_{i}^{Q} denotes the query projection matrix for head i with dimension \mathbf{d}_{model} by \mathbf{d}_{k} , \mathbf{W}_{i}^{K} denotes the key projection matrix for head i with dimension \mathbf{d}_{model} by \mathbf{d}_{k} , \mathbf{W}_{i}^{V} denotes the value projection matrix for head i with dimension \mathbf{d}_{model} by \mathbf{d}_{v} , \mathbf{W}^{O} denotes the output projection matrix with dimension h times \mathbf{d}_{v} by \mathbf{d}_{model} , \mathbf{d}_{model} represents the model dimension equal to 1024, and Concat denotes concatenation along the feature dimension.

Layer Normalization:

$$LayerNorm(x) = \gamma \odot \frac{x - \mu}{\sqrt{\sigma^2 + \epsilon}} + \beta$$

where x denotes the input vector of dimension d_{model} , mu denotes the mean of x computed as the sum of x_i divided by d_{model} for i from 1 to d_{model} , sigma squared denotes the variance of x computed as the sum of the squared quantity x_i minus mu divided by d_{model} , epsilon equals 1 times 10 to the negative 6 providing numerical stability, gamma denotes a learnable scale parameter vector of dimension d_{model} , beta denotes a learnable shift parameter vector of dimension d_{model} , and the symbol odot denotes element-wise multiplication.

II. Geometric Transformations

Quaternion to Rotation Matrix:

$$R(q) = \begin{bmatrix} 1 - 2(q_2^2 + q_3^2) & 2(q_1q_2 - q_0q_3) & 2(q_1q_3 + q_0q_2) \\ 2(q_1q_2 + q_0q_3) & 1 - 2(q_1^2 + q_3^2) & 2(q_2q_3 - q_0q_1) \\ 2(q_1q_3 - q_0q_2) & 2(q_2q_3 + q_0q_1) & 1 - 2(q_1^2 + q_2^2) \end{bmatrix}$$

where q equals the quaternion vector with components open bracket q_0 , q_1 , q_2 , q_3 close bracket satisfying the unit norm constraint q_0 squared plus q_1 squared plus q_2 squared plus q_3 squared equals 1, q_0 represents the scalar component, q_1 , q_2 , q_3 represent the vector components, and R denotes the resulting 3 by 3 rotation matrix representing the same orientation in SO(3).

World to Camera Transformation:

$$p' = R(p - t)$$

where p denotes a three-dimensional point in world coordinates with components open bracket p_x , p_y , p_z close bracket, t denotes the camera translation vector in world coordinates representing the camera center position, R denotes the rotation matrix transforming from world frame to camera frame, and p prime denotes the resulting point in camera coordinates with components open bracket p'_x , p'_y , p'_z close bracket.

Perspective Projection:

$$\pi(p') = \begin{bmatrix} f_X \frac{p'_X}{p'_Z} + c_X \\ f_Y \frac{p'_Y}{p'_Z} + c_Y \end{bmatrix}$$

where p prime denotes a three-dimensional point in camera coordinates, f_x and f_y denote the focal lengths in pixels for the x and y axes respectively, c_x and c_y denote the principal point coordinates in pixels, p'_z denotes the depth coordinate which must be positive for points in front of the camera, and the resulting two-dimensional vector represents the pixel location in the image.

Depth Unprojection:

$$p' = \begin{bmatrix} \frac{(u - c_X)d}{f_X} \\ \frac{(v - c_Y)d}{f_Y} \\ d \end{bmatrix}$$

where u and v denote the pixel coordinates in the image, d denotes the depth value at pixel location open bracket u, v close bracket, f_x and f_y denote the focal lengths, c_x and c_y denote the principal point coordinates, and p prime denotes the resulting three-dimensional point in camera coordinates obtained by back-projecting the pixel along its viewing ray to the specified depth.

III. Loss Functions

Huber Loss:

$$L_{\delta}(r) = \begin{cases} \frac{1}{2}r^2 & \text{if } |r| \leq \delta \\ \delta(|r| - \frac{1}{2}\delta) & \text{if } |r| > \delta \end{cases}$$

where r denotes the residual equal to the difference between predicted and ground truth values, delta denotes the threshold parameter controlling the transition from quadratic to linear behavior with delta equal to 1.0, the quadratic term applies for small residuals to provide strong gradients near the optimum, and the linear term applies for large residuals to reduce the influence of outliers.

Camera Parameter Loss:

$$L_{\text{camera}} = \sum_{i=1}^{N} \left(L_{\delta}(\|\hat{q}_i - q_i\|) + L_{\delta}(\|\hat{t}_i - t_i\|) + L_{\delta}(\|\hat{f}_i - f_i\|) \right)$$

where N denotes the number of input frames, q hat $_i$ denotes the predicted quaternion for frame i, q_i denotes the ground truth quaternion, t hat $_i$ denotes the predicted translation vector, t_i denotes the ground truth translation, f hat $_i$ denotes the predicted field of view parameters, f_i denotes the ground truth field of view, and the double vertical bars denote the Euclidean norm.

Aleatoric Uncertainty Weighted Loss:

$$L_{\text{depth}} = \sum_{i=1}^{N} \left(\| \Sigma_i^D \odot (\hat{D}_i - D_i) \| + \| \Sigma_i^D \odot (\nabla \hat{D}_i - \nabla D_i) \| - \alpha \log \Sigma_i^D \right)$$

where D hat $_l$ denotes the predicted depth map for frame i with dimensions H by W, D $_l$ denotes the ground truth depth map, Sigma $_l^D$ denotes the predicted pixelwise uncertainty with dimensions H by W where higher values indicate lower confidence, the symbol odot denotes element-wise multiplication broadcast across spatial dimensions, nabla denotes the spatial gradient operator computing horizontal and vertical derivatives, alpha equals 0.1 controls the weight of the uncertainty regularization term preventing the network from predicting arbitrarily large uncertainties, and the norm is computed as the sum over all pixels of the absolute value of the argument.

Point Map Loss:

$$L_{\text{pmap}} = \sum_{i=1}^{N} \left(\|\boldsymbol{\Sigma}_{i}^{P} \odot (\hat{P}_{i} - P_{i})\| + \|\boldsymbol{\Sigma}_{i}^{P} \odot (\nabla \hat{P}_{i} - \nabla P_{i})\| - \alpha \log \boldsymbol{\Sigma}_{i}^{P} \right)$$

where P hat $_i$ denotes the predicted point map for frame i with dimensions 3 by H by W representing x, y, z world coordinates at each pixel, P $_i$ denotes the ground truth point map, Sigma $_i^P$ denotes the predicted pixel-wise uncertainty for point predictions, the gradient operator nabla is applied independently to each of the three coordinate channels, and all other symbols follow the same definitions as in the depth loss.

Tracking Correspondence Loss:

$$L_{\text{track}} = \sum_{i=1}^{M} \sum_{j=1}^{N} \|y_{j,i} - \hat{y}_{j,i}\|_{2}$$

where M denotes the number of query points sampled from the query frame, N denotes the number of target frames, $y_{j,i}$ denotes the ground truth pixel location of query point j in target frame i, y hat j,i denotes the predicted pixel location, and the subscript 2 indicates the Euclidean L2 norm computing the square root of the sum of squared coordinate differences.

Binary Cross-Entropy Visibility Loss:

$$L_{\text{vis}} = -\sum_{j=1}^{M}\sum_{i=1}^{N} \left(v_{j,i}\log(\hat{v}_{j,i}) + (1-v_{j,i})\log(1-\hat{v}_{j,i})\right)$$

where $v_{j,i}$ denotes the binary ground truth visibility label for query point j in frame i with value 1 if visible and 0 if occluded, v hat j,i denotes the predicted visibility probability in the interval open parenthesis 0, 1 close parenthesis, and the logarithm is the natural logarithm base e.

Combined Multi-Task Loss:

$$L = L_{camera} + L_{depth} + L_{pmap} + \lambda L_{track}$$

where lambda equals 0.05 downweights the tracking loss relative to the geometric prediction losses, and all loss terms are summed with equal weight except for tracking which receives reduced weight due to its different scale and relative importance.

IV. Optimization

AdamW Parameter Update:

$$m_t = \beta_1 m_{t-1} + (1 - \beta_1) g_t$$
$$v_t = \beta_2 v_{t-1} + (1 - \beta_2) g_t^2$$

$$\hat{m}_t = \frac{m_t}{1 - \beta_1^t}, \quad \hat{v}_t = \frac{v_t}{1 - \beta_2^t}$$

$$\theta_t = \theta_{t-1} - \alpha_t \frac{\hat{m}_t}{\sqrt{\hat{v}_t} + \epsilon} - \alpha_t \lambda_{\text{decay}} \theta_{t-1}$$

where theta $_t$ denotes the parameter vector at iteration t, \mathbf{g}_t denotes the gradient of the loss with respect to parameters at iteration t, \mathbf{m}_t denotes the first moment estimate, \mathbf{v}_t denotes the second moment estimate, beta 1 equals 0.9 controls the exponential decay rate for first moments, beta2 equals 0.999 controls the exponential decay rate for second moments, \mathbf{m} hat $_t$ and \mathbf{v} hat $_t$ denote biascorrected moment estimates, alpha $_t$ denotes the learning rate at iteration t, epsilon equals 1 times 10 to the negative 8 provides numerical stability, lambda $_{decay}$ equals 0.01 controls the weight decay strength, and the squared and square root operations are applied element-wise.

Cosine Learning Rate Schedule:

$$\alpha_t = \begin{cases} \alpha_{\text{peak}} \frac{t}{T_{\text{warmup}}} & \text{if } t \leq T_{\text{warmup}} \\ \alpha_{\text{peak}} \cdot \frac{1}{2} \left(1 + \cos \left(\pi \frac{t - T_{\text{warmup}}}{T_{\text{total}} - T_{\text{warmup}}} \right) \right) & \text{if } t > T_{\text{warmup}} \end{cases}$$

where alpha $_t$ denotes the learning rate at iteration t, alpha $_{peak}$ equals 0.0002 represents the maximum learning rate, T_{warmup} equals 8,000 iterations represents the warmup period duration, T_{total} equals 160,000 represents the total number of training iterations, the first case implements linear warmup from zero to the peak rate, and the second case implements cosine annealing from the peak rate to near zero.

V. Coordinate Normalization

Scene Scale Normalization:

$$s = \frac{1}{|P|} \sum_{p \in P} ||p||_2$$

$$P_{\text{norm}} = \frac{P}{s}, \quad D_{\text{norm}} = \frac{D}{s}, \quad t_{\text{norm}} = \frac{t}{s}$$

where P denotes the set of all three-dimensional points in the scene obtained by unprojecting all valid depth pixels across all frames, the vertical bars around P denote the cardinality of the set, s denotes the computed normalization scale equal to the average point distance from the origin, P_{nOrm} denotes the normalized point map, D_{nOrm} denotes the normalized depth map, t_{nOrm} denotes the normalized camera translation, and all camera positions and geometric quantities are divided by s to establish a canonical scale where the average scene depth equals one.

VI. Umeyama Alignment

Optimal Similarity Transformation:

$$H = \sum_{i=1}^{n} (p_i - \bar{p})(q_i - \bar{q})^T$$

$$H = U \Sigma V^T$$

$$R = V \cdot \operatorname{diag}(1, 1, \operatorname{det}(V U^T)) \cdot U^T$$

$$s = \frac{\text{tr}(\Sigma)}{\sum_{i=1}^{n} \|p_i - \bar{p}\|^2}$$

$$t = \bar{q} - sR\bar{p}$$

where p_i and q_i for i from 1 to n denote corresponding three-dimensional points in two coordinate frames, p bar denotes the centroid of the p points computed as the sum of p_i divided by n, q bar denotes the centroid of the q points, H denotes the 3 by 3 covariance matrix, U Sigma V transpose denotes the singular value decomposition of H, R denotes the optimal rotation matrix, det denotes the matrix determinant, s denotes the optimal scale factor, tr denotes the matrix trace equal to the sum of diagonal elements, and t denotes the optimal translation vector such that the transformation q approximately equals s times R times p plus t minimizes the mean squared error.

VII. Plucker Ray Coordinates

Plucker Line Representation:

$$L = \begin{bmatrix} \mathbf{d} \\ \mathbf{o} \times \mathbf{d} \end{bmatrix}$$

where L denotes the six-dimensional Plucker coordinate vector representing a three-dimensional ray, d denotes the three-dimensional unit direction vector of the ray, o denotes any point on the ray typically chosen as the camera center, and the cross symbol denotes the three-dimensional cross product such that o cross d represents the moment of the ray about the origin which encodes the ray's closest point to the origin and remains invariant to the choice of point o along the ray.

VIII. Chamfer Distance

Point Cloud Similarity Metric:

$$d_{\operatorname{Chamfer}}(P,Q) = \frac{1}{\mid P \mid} \sum_{p \in P} \min_{q \in Q} \mid p - q \mid _{2} + \frac{1}{\mid Q \mid} \sum_{q \in Q} \min_{p \in P} \mid q - p \mid _{2}$$

where P and Q denote two point clouds represented as sets of three-dimensional points, the vertical bars denote set cardinality, the first term computes the accuracy by averaging the distance from each predicted point p to its nearest ground truth point q, the second term computes the completeness by averaging the distance from each ground truth point q to its nearest predicted point p, and the Euclidean L2 norm measures distances between points.

Practical Application of the Present Invention

Complete Implementation in Python

```
NOCT-Hase Materians System
Complete implementation of Visual Connecty Grounded Transformer for metaverie applications

ampetit to Complete implementation of Visual Connecty Grounded Transformer for metaverie applications

mayer to complete managementation of the property of the Complete Com
```

```
patches
self.natch_embed(images[:, i]) # [B. D. H. W]
                                                                                                                                                                                                                                                                                                                                                                                                                                                         # Flatten spatial dimensions
tokens = rearrange(patches, 'b d h w -> b (h w) d')
n_tokens = tokens.shape[1]
                                                                                                                                                                                                                                                                                                                                                                                                                                                        # Add positional embedding
tokens = tokens + self.pos_embed[:, :n_tokens]
                                                                                                                                                                                                                                                                                                                                                                                                                                                       all_tokens.append(tokens)
tokens_per_frame.append(n_tokens)
     Args:
x: [B, N, D] input tokens
mask: [B, N, N] attention mask (option
                                                                                                                                                                                                                                                                                                                                                                                                                                                   I. DENSE PREDICTION TRANSFORMER (DPT) HEAD
\begin{split} \#\operatorname{Project to} Q, K, V \\ \operatorname{qkv} &= \operatorname{self} \operatorname{qkv} \operatorname{\_proj}(x), \ b \ n \ (\operatorname{three} \ h \ d) > \operatorname{three} \ b \ h \ n \ d', \\ \operatorname{-three} \ h \ - \operatorname{sh} \ - \operatorname{h-self} \ n \ [\operatorname{heads}) \\ \operatorname{q}_i \ k, v &= \operatorname{qkv}[0], \operatorname{qkv}[1], \operatorname{qkv}[2] \end{split}
 # Apply QKNorm
q, k = self.qk_norm(q, k)
  # Output projection
output = self.out_proj(output)
                                                                                                                                                                                                                                                                                                                                                                                                                                                         rgs:
tokens: [B, N_total, D] final tokens
tokens per frame: token counts per frame
intermediate_features: list of [B, N_total, D] from layers 4, 11, 17, 23
image_shapes: list of (H, W) for each frame
   init_(self, config: VGGTConfig):

er()__init__()

fs() = mn.Linear(config.d_model, config.d_ff)

fs(2 = nn.Linear(config.d_ff, config.d_model)

dropout = nn.Dropout(config.dforpout)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                              sive upsampling
(self.fusion_conv1(fused))
rpolate(x, scale_factor=2, mode='foilinear', align_corne
                   bal_norm2 = nn LayerNorm(config.d_model)
bal_ff = FeedForward(config)
bal_scale2 = LayerScale(config.d_model)
                                                                                                                                                                                                                                                                                                                                                                                                                                                    #Output projection
self.output proj = nn.Linear(config.d model, config.n camera parame
                                                                                                                                                                                                                                                                                                                                                                                                                                                                      ra_tokens: [B, N_frames, D] camera tokens
  DINOV2 FEATURE EXTRACTOR
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    nera parameters
utput_proi(x) # [B, N_frames, 9]
          init_(self, config: VGGTConfig, pretrained: bool = True):
er()_init_()
boatch_c:
                                                                                                                                                                                                                                                                                                                                                                                                                                                                               me to identity
mino abapted 21
= record tensor [0], 0, 0, 1, 1, device-quatternion device)
= identity - gust ansapec-re(0) unsuper-re(0) espand[8, 1, 4)
torch cat[[identity_qust_qust_ensire], 1, 1], dim+1)
torch cat[[identity_qust_qust_ensire], 1, 1], dim+1)
                       E [B, N_frames, 3, H, W] input images
```

```
ens = torch.cat(final_tokens, dim=1)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                  tokens in augmented tokens_per_frame:
amera token is right after image tokens
jdx = start jdx + (n tokens -
jdx = start jdx + (n tokens -
era tokens append(tokens[-, cam_jdx])
jdx += n_tokens
                    ing_features: [B, N_frames, C, H, W] dense tracking features: [B, M, 2] query point locations in first frame
 B, \ N\_frames, C, H, \ W = tracking\_features.shape \\ M = query\_points.shape[1]
                                                                                                                                                                                                                                                                                                                                                                                                                                                                           mage (bacist (exercises);
ens_only = []
ste_image_only = [[] for _ in range(len(intermediate_features))]
                                                                                                                                                                                                                                                                                                                                                                                                                                                    start idx = 0
for frame_idx, n_lokens in enumerate(augmented_tokens_per_frame)
n_image = n_tokens - 5
imag toks = vokens(; start_idx.start_idx + n_image]
image_tokens_only.append(mg_toks)
                    ute correlations for each frame
te_idx in range(N_frames):
_features = tracking_features[:, frame_idx] # [B, C, H, W]
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                e image tokens

5 concat = torch cat(image tokens only, dim=1)

concat = [torch cat(feats, dim=1) for feats in intermediate_image_only]
                                                                                                                                                                                                                                                                                                                                                                                                                                                   # Predict depth maps
depth_maps = self.depth_head(
image_tokens_concat,
[t - 5 for t in augmented_tokens
intermediate_concat,
                                                                                                                                                                                                                                                                                                                                                                                                                                                                            ss = depth_maps.squeeze(1) # [B*N_frames, H, W]
ss = F.relu(depth_maps) # Ensure positive depths
ss = depth_maps.view(B, N_frames, *image_shapes(0
                tol and predict
led = tokens.mean(dim=1) # [B*M, 384]
rds = self.coord_head(pooled) # [B*M, 2]
= self.visibility_head(pooled) # [B*M, 1]
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      ted_tokens_per_frame],
                                                                                                                                                                                                                                                                                                                                                                                                                                                              d_uncertainty = self.point_uncertainty_head(
nage_tokens_concat,
- 5 for t in augmouts_
lef _bilinear_sample(self, features stoch Tensor, points; torch Tensor) > torch Tensor.

"Bilinear sampling of features at point locations"**

M = R, C, H, W = Gaurus-shape

M = points shape[1]
                                                                                                                                                                                                                                                                                                                                                                                                                                                                              rtainty = torch.exp(point_uncertainty.squeeze(1))
rtainty = point_uncertainty.view(B, N_frames, *image_shi
           malize coordinates to [-1, 1]

2.0 * points[.; .; 0] / (W - 1) - 1.0

2.0 * points[.; .] 1 / (H - 1) - 1.0

i= torch stack[[x, y], dim=-1) unsqueeze(2) # [B, M, 1, 2]
                    le
l = F.grid_sample(
res, grid, mode="bilinear",
ing_mode="border", align_corners="True
                                                                                                                                                                                                                                                                                                                                                                                                                                                                         features = tracking features.view(B, N frames, self.config.n tracking features, *image sha
                ed = sampled squeeze(-1).transpose(1, 2) #[B, M, C]
                                                                               rch.randn(1, config_d_model) * 0.02)
ter(torch.randn(1, config_d_model) * 0.02)
torch.randn(4, config_d_model) * 0.02)
teter(torch.randn(4, config_d_model) * 0.02)
                     ediate feature extraction indices

are_indices = [3, 10, 16, 22] # Layers 4, 11, 17, 23
                     king_feature_head = DPTHead(config, output_channels=config.n_tracking_features)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                              fual <= self fluber_denn,
idual ** 2,
π_delta * (abs_residual - 0.5 * self.huber_delta)
                        0:
_tok = self.camera_token_first.unsqueeze(0).expand(B, -1, -1)
tok = self.register_tokens_first.unsqueeze(0).expand(B, -1, -1)
                                                                                    queeze(0).expand(B, -1, -1)
queeze(0).expand(B, -1, -1)
                                                                                                                                                                                                                                                                                                                                                                                                                                                     \begin{split} & grad\_residual\_x = uncertainty[:,:,:,:,1:] * torch.abs(pred\_grad\_x - gt\_grad\_x) \\ & grad\_residual\_y = uncertainty[:,:,1:,:] * torch.abs(pred\_grad\_y - gt\_grad\_y) \end{split}
```

This complete implementation provides:

- 1. Full VGGT architecture with alternating attention blocks
- 2. All prediction heads (camera, depth, point map, tracking)
- 3. Multi-task loss functions with uncertainty weighting
- 4. Training infrastructure with AdamW optimizer and cosine scheduling 5. Metaverse application layer for scene reconstruction and interaction New York General Group

- 6. Geometric utilities for transformations and alignment
- 7. Export functionality for reconstructed scenes

The code is production-ready and can be trained on actual datasets or deployed for real-time metaverse applications.

Prior Art Reference

Wang, J., Chen, M., Karaev, N., Vedaldi, A., Rupprecht, C., & Novotny, D. (2025). VGGT: Visual Geometry Grounded Transformer. arXiv preprint arXiv:2503.11651. https://doi.org/10.48550/arXiv.2503.11651