
Multi-Stage Propulsion System with Variable-Geometry Corrugate Lobe Exhaust Architecture for Enhanced Supersonic Thrust Vectoring and Mixing Efficiency

Multi-Stage Propulsion System with Variable-
Geometry Corrugate Lobe Exhaust Architecture for
Enhanced Supersonic Thrust Vectoring and Mixing

Efficiency

Yu Murakami, New York General Group
January 1, 2026

Technical Field

The present invention relates to aerospace propulsion systems, and more
particularly to an advanced rocket propulsion assembly incorporating variable-
geometry corrugated lobe nozzle configurations optimized for supersonic exhaust
flow management, enhanced propellant mixing efficiency, and improved thrust
performance across multiple atmospheric flight regimes.

Background of the Invention

Contemporary rocket propulsion systems face persistent challenges in optimizing
exhaust flow characteristics during supersonic and hypersonic flight conditions.
Conventional convergent-divergent nozzle geometries, while effective for basic
thrust generation, exhibit inherent limitations in managing shock wave structures,
boundary layer separation phenomena, and downstream mixing processes that
significantly impact overall propulsion efficiency and vehicle controllability.

Traditional conical and bell-shaped nozzle configurations produce relatively
uniform exhaust plumes that, while predictable, fail to capitalize on potential
aerodynamic advantages offered by more complex geometrical arrangements.
The interaction between supersonic exhaust gases and ambient atmospheric
conditions creates shock wave patterns that dissipate significant energy through
thermal and acoustic mechanisms, reducing net propulsive efficiency and
contributing to undesirable acoustic signatures that complicate vehicle
integration and ground support operations.

The phenomenon of flow separation within divergent nozzle sections represents a
particularly problematic aspect of conventional designs. When operating at
nozzle pressure ratios below design conditions, the boundary layer detaches from
nozzle walls, creating recirculation zones that reduce effective thrust area and
introduce asymmetric force components that compromise vehicle stability.
Existing mitigation approaches, including altitude-compensating nozzle designs
and mechanical insertion devices, add substantial mass, complexity, and potential
failure modes to propulsion systems.

Furthermore, the mixing characteristics of exhaust gases with ambient air or
secondary propellant streams remain suboptimal in traditional configurations.
Efficient mixing is essential for numerous applications including afterburning
systems, air-augmented rocket propulsion, and thermal management of
downstream vehicle structures. The shear layer development in conventional
round or conical nozzles proceeds at rates insufficient for many advanced
propulsion concepts, necessitating extended mixing lengths that impose vehicle
geometry constraints and performance penalties.

Lobed mixer nozzle technology, originally developed for turbofan engine
applications, demonstrates significant potential for enhancing mixing rates
through the generation of streamwise vortical structures. However, direct
application of turbofan lobed mixer principles to rocket propulsion systems
operating at substantially higher pressure ratios and temperature differentials
requires fundamental reconceptualization of the underlying flow physics and
geometric optimization parameters.

Previous attempts to incorporate lobed structures into convergent-divergent
nozzle architectures have encountered difficulties in managing the complex
shock wave interactions that arise when supersonic flow passes through non-
axisymmetric passage geometries. The three-dimensional nature of shock
structures in lobed nozzle configurations creates regions of locally intense
heating and pressure loading that challenge structural integrity and thermal
protection system design.

The relationship between corrugation extent within the divergent section and
resulting flow behavior has not been systematically exploited in practical
propulsion system designs. While fundamental research indicates that the
longitudinal distribution of lobe amplitude profoundly influences shock wave
coalescence, mixing layer development, and separation onset characteristics,
translation of these insights into implementable propulsion hardware remains
incomplete.

There exists therefore a significant need for a propulsion system architecture that
systematically leverages corrugated lobe geometry principles to achieve superior
performance across the multiple operational domains encountered during rocket-
powered flight, while maintaining the reliability, manufacturability, and structural
robustness required for practical aerospace applications.

Summary of the Invention

The present invention provides a multi-stage rocket propulsion system
incorporating an innovative exhaust nozzle architecture characterized by
precisely engineered corrugated lobe geometry extending through a controlled
portion of the divergent section. The system achieves unprecedented
combinations of mixing efficiency, shock wave management, and separation
resistance through optimization of the corrugation extent at approximately sixty
percent of the divergent section length, representing a fundamental departure
from both conventional smooth-wall nozzles and fully-corrugated lobe mixer
designs.

The propulsion system of the present invention comprises a primary combustion
chamber assembly, a throat section of circular cross-section, a convergent inlet
section of conventional geometry, and a divergent exhaust section featuring a
plurality of circumferentially-distributed lobes with corrugation initiating at a
predetermined axial station downstream of the throat plane and extending to the
nozzle exit plane. The corrugated portion encompasses approximately sixty
percent of the total divergent section length, with the upstream forty percent
maintaining smooth axisymmetric geometry that establishes stable supersonic
flow prior to introduction of three-dimensional perturbations.

The lobe architecture generates a characteristic "double-diamond" shock pattern
within the corrugated region that progressively coalesces into a single-diamond
configuration in the downstream exhaust plume. This controlled shock
coalescence process extracts energy from undesirable shock oscillations while
preserving the streamwise vortical structures essential for rapid mixing. The
spatial evolution of shock geometry from complex multi-element patterns to
simpler unified structures reduces acoustic emission intensity and minimizes the
potential for resonant coupling between shock oscillations and vehicle structural
modes.

The sixty-percent corrugation extent represents an optimal balance between
competing physical mechanisms that govern supersonic lobed nozzle
performance. Corrugation lengths substantially exceeding this value produce
excessive dissipation within the nozzle, reducing exit momentum and introducing
thermal loading challenges in the extended corrugated section. Conversely,
corrugation lengths significantly below this value necessitate more abrupt lobe
geometry to achieve equivalent exit plane configuration, resulting in divergence
angles that exceed critical values for boundary layer attachment and precipitate
detrimental flow separation.

The propulsion system incorporates structural provisions for the unique loading
patterns generated by three-dimensional supersonic flow through the corrugated
lobe section. The lobe peaks experience compression loading from the adjacent
flow expansion regions, while the lobe troughs sustain tensile stress
concentrations from the converging flow paths. The wall thickness distribution
varies circumferentially and axially to accommodate these non-uniform loading
conditions while minimizing overall nozzle mass.

Thermal management provisions address the concentrated heating that occurs at
lobe peak leading edges where shock wave impingement creates localized
stagnation conditions. Regenerative cooling channel geometry follows the three-
dimensional lobe contours, with increased coolant flow velocity through peak
regions achieved through controlled channel cross-sectional area reduction.
Alternative embodiments incorporate ablative thermal protection in the
corrugated section for applications where regenerative cooling complexity is
undesirable.

The propulsion system optionally incorporates active geometry modification
capability that enables adjustment of the effective corrugation extent during
flight. Sliding sleeve elements within the divergent section can extend or retract
to expose varying portions of the underlying corrugated lobe structure, permitting
optimization of nozzle characteristics for different atmospheric pressure and
flight velocity conditions. The actuation system utilizes pressure-balanced
mechanisms that minimize force requirements while providing deterministic
positioning across the operational envelope.

A further aspect of the invention provides for staged propulsion configurations
wherein multiple nozzle assemblies with differing corrugation extents operate in
sequence or in combination. First-stage applications emphasize extended
corrugation for maximum sea-level mixing enhancement, while upper-stage
applications employ reduced corrugation extent optimized for vacuum operation
where ambient interaction effects are negligible. Parallel-burning configurations
may incorporate nozzles of varying corrugation extent to provide throttling-like
control of aggregate mixing characteristics without mechanical throttling of
individual engines.

The manufacturing methodology for the corrugated lobe nozzle section
accommodates the complex three-dimensional geometry through advanced
additive manufacturing processes that build the complete divergent section as a
monolithic component. The layer-by-layer construction approach inherently
supports the varying wall thickness requirements and integrated cooling channel
geometries that would present significant challenges for conventional subtractive
or forming-based manufacturing methods.

Quality assurance provisions address the unique inspection challenges posed by
the internal corrugated geometry. Computed tomographic scanning verifies
dimensional conformance of the complex lobe profiles, while specialized
ultrasonic transducer arrays confirm wall thickness and detect internal defects in
regions inaccessible to conventional inspection techniques. Surface finish
requirements for the corrugated section balance aerodynamic considerations
against practical manufacturing capabilities, with controlled surface roughness

New York General Group 1

Multi-Stage Propulsion System with Variable-Geometry Corrugate Lobe Exhaust Architecture for Enhanced Supersonic Thrust Vectoring and Mixing Efficiency

specifications that acknowledge the reduced sensitivity of mixing-dominated
flow regimes to small-scale wall perturbations.

Detailed Description of the Invention

The present invention constitutes a comprehensive propulsion system
architecture that systematically exploits the relationship between corrugated lobe
geometry and supersonic flow behavior to achieve unprecedented performance
across multiple operational domains. The development of this system draws upon
fundamental principles of compressible fluid dynamics, three-dimensional shock
wave theory, and vortex-dominated mixing processes, synthesizing these
elements into a unified propulsion concept that addresses longstanding
limitations of conventional rocket nozzle designs.

The core innovation resides in the recognition that the longitudinal extent of
corrugation within a convergent-divergent nozzle profoundly influences the
resulting flow field characteristics in ways that can be systematically optimized
for specific performance objectives. Through extensive analytical investigation
of the relationships between geometric parameters and flow behavior, the present
invention identifies the corrugation extent of approximately sixty percent of the
divergent section length as representing an optimal configuration that balances
competing physical mechanisms governing supersonic lobed nozzle
performance.

The propulsion system operates across the complete range of atmospheric
conditions encountered during rocket-powered flight, from sea-level launch
through upper atmospheric ascent to vacuum orbital insertion. The corrugated
lobe architecture provides inherent adaptability to varying ambient pressure
conditions while maintaining the structural robustness and thermal management
capability essential for reliable operation in the demanding environment of rocket
propulsion.

The following detailed description presents the complete technical disclosure
necessary for implementation of the invention by those skilled in the relevant
arts. The description proceeds from fundamental geometric specifications
through flow field behavior, structural considerations, thermal management
approaches, manufacturing processes, and operational procedures, providing
comprehensive guidance for practical realization of the disclosed propulsion
system.

The geometric configuration of the propulsion system is most precisely described
with reference to a cylindrical coordinate system having its origin at the centroid
of the throat plane, with the axial coordinate z directed downstream along the
nozzle axis, the radial coordinate r extending outward from the axis, and the
azimuthal coordinate θ measured from a reference meridian plane. All geometric
specifications in the following description employ this coordinate system unless
otherwise noted.

The throat section occupies the region from z equals negative five millimeters to
z equals positive five millimeters for a representative implementation having
throat diameter of one hundred twenty millimeters. The throat contour follows a
circular arc profile in the meridional plane with radius of curvature equal to two
point five times the throat radius, providing smooth acceleration through the
sonic condition while avoiding the sharp geometric transitions that would
introduce undesirable wave patterns in the transonic region.

The convergent inlet section extends from z equals negative one hundred thirty
millimeters to z equals negative five millimeters, with the upstream boundary
defined by the combustion chamber interface plane. The convergent section wall
radius varies according to a fifth-order polynomial function of axial position,
with coefficients selected to provide zero wall slope and zero wall curvature at
both the chamber interface and the throat approach stations. This polynomial
formulation, known in the technical literature as a Rao contour after the
pioneering work of G.V.R. Rao at the Jet Propulsion Laboratory, minimizes
boundary layer momentum thickness at the throat while maintaining attached
flow throughout the convergent section.

The divergent exhaust section extends from z equals positive five millimeters to z
equals positive four hundred twenty millimeters, providing a total divergent
length of four hundred fifteen millimeters. This divergent section length
establishes an overall length-to-throat-diameter ratio of approximately three point
five, representing a moderate value that balances performance considerations
against envelope and mass constraints.

The divergent section divides into two distinct regions characterized by
fundamentally different geometric philosophies. The upstream smooth portion
extends from z equals positive five millimeters to z equals positive one hundred
seventy-one millimeters, occupying forty percent of the total divergent length.
Throughout this region, the wall geometry maintains axisymmetric character
with radius varying according to a prescribed expansion contour optimized for
efficient supersonic acceleration.

The wall radius within the upstream smooth portion follows a modified Rao bell
contour that provides initial rapid expansion followed by progressive reduction in
expansion rate as the flow approaches the corrugation initiation station. At z
equals positive five millimeters, the wall radius equals sixty millimeters
corresponding to the throat half-diameter. At z equals positive one hundred
seventy-one millimeters, the wall radius has increased to one hundred fourteen
millimeters, corresponding to an area ratio of approximately three point six
relative to the throat. The local wall angle at the corrugation initiation station
equals eight point three degrees relative to the nozzle axis, selected to be

sufficiently gradual that the boundary layer approaching the corrugated section
possesses adequate momentum to resist separation when subsequently
encountering the three-dimensional lobe geometry.

The downstream corrugated lobe portion extends from z equals positive one
hundred seventy-one millimeters to z equals positive four hundred twenty
millimeters, occupying sixty percent of the total divergent length. Within this
region, the wall departs from axisymmetric geometry to assume the three-
dimensional corrugated character that constitutes the distinctive feature of the
present invention.

The corrugated lobe geometry is defined by superposition of a circumferentially-
varying amplitude function upon the baseline axisymmetric expansion contour.
The local wall radius at any point within the corrugated section is expressed as
the sum of a mean radius component that varies only with axial position and a
perturbation component that varies with both axial position and azimuthal angle.

For the representative implementation incorporating eight lobes, the perturbation
component varies as a cosine function of eight times the azimuthal angle, with
amplitude increasing from zero at the corrugation initiation station to maximum
value at the exit plane. The amplitude at the exit plane equals eighteen
millimeters, representing approximately eleven percent of the mean exit radius.
This amplitude magnitude generates pressure perturbations of sufficient strength
to drive vigorous vortical mixing while remaining within limits that maintain
attached boundary layer flow.

The mean radius at the exit plane equals one hundred sixty-two millimeters,
corresponding to an exit area ratio of seven point three relative to the throat area.
This expansion ratio is appropriate for the design nozzle pressure ratio of fifty,
typical of first-stage rocket engines operating with kerosene and liquid oxygen
propellants at chamber pressures of approximately seventy bar.

The amplitude growth function within the corrugated section follows a modified
cosine distribution rather than simple linear variation. The amplitude equals zero
at the corrugation initiation station, increases slowly through the initial portion of
the corrugated section, accelerates through the middle portion, and approaches
the maximum value asymptotically near the exit plane. This amplitude
distribution provides gradual introduction of the three-dimensional perturbation
when the flow first encounters the corrugated geometry, avoiding the abrupt wall
angle changes that would otherwise occur if linear amplitude growth were
employed with the required total amplitude change.

The specific amplitude distribution function incorporates a single adjustable
parameter that controls the rate of amplitude growth. For the representative
implementation, this parameter is selected such that fifty percent of the total
amplitude is achieved at a point seventy percent of the distance from the
corrugation initiation station to the exit plane. This relatively delayed amplitude
growth biases the geometric change toward the downstream portion of the
corrugated section where the expanded flow possesses reduced static pressure
and correspondingly reduced tendency toward separation.

The transition between peak and trough regions around the lobe circumference
follows a smoothly-varying profile that avoids the sharp corners that would
create localized flow separation and attendant performance degradation. Each
lobe spans forty-five degrees of azimuthal arc for the eight-lobe configuration,
with the peak centered at angles of zero, forty-five, ninety, one hundred thirty-
five, one hundred eighty, two hundred twenty-five, two hundred seventy, and
three hundred fifteen degrees from the reference meridian. The trough regions
center at angles offset by twenty-two point five degrees from the peak locations.

The transition region between peak and trough spans approximately fifteen
degrees of azimuthal arc on each side of the peak and trough center lines. Within
this transition region, the radial position varies according to a raised-cosine
blending function that provides continuous first and second derivatives of the
wall surface, eliminating the curvature discontinuities that would otherwise
generate undesirable wave patterns and structural stress concentrations.

The wall thickness distribution throughout the nozzle accommodates the varying
structural and thermal requirements encountered at different locations. Within the
throat region, where heat flux reaches maximum values due to the combination
of high gas temperature and high convective heat transfer coefficient associated
with the sonic flow condition, wall thickness equals four point five millimeters
with regenerative cooling channels occupying an additional three millimeters of
radial extent. Within the convergent section, wall thickness decreases
progressively upstream to three point two millimeters at the chamber interface,
reflecting the reduced thermal loading in this region.

Within the upstream smooth portion of the divergent section, wall thickness
decreases from four point two millimeters immediately downstream of the throat
to three point zero millimeters at the corrugation initiation station, following the
axial variation in thermal loading that results from flow expansion and
consequent reduction in gas temperature and density. Within the corrugated
section, wall thickness varies both axially and circumferentially to address the
three-dimensional loading patterns characteristic of this region.

At lobe peak locations within the corrugated section, wall thickness equals three
point two millimeters at the corrugation initiation station and increases
progressively to four point zero millimeters at the exit plane. This thickness
increase toward the exit reflects the increasing structural loading associated with
the growing lobe amplitude and the concentrated shock impingement that occurs
at peak leading edges. At lobe trough locations, wall thickness exceeds the peak

New York General Group 2

Multi-Stage Propulsion System with Variable-Geometry Corrugate Lobe Exhaust Architecture for Enhanced Supersonic Thrust Vectoring and Mixing Efficiency

values by approximately twenty percent at corresponding axial stations,
providing additional material to resist the elevated hoop stress that occurs where
the local radius of curvature falls below the mean value.

The transition between peak and trough thickness values follows the same
azimuthal distribution function as the wall radius variation, ensuring consistent
structural behavior around the lobe circumference. The thickness variation is
implemented through corresponding adjustment of the external wall surface
while maintaining the precisely-defined internal flow surface geometry.

The flow physics within the upstream smooth portion of the divergent section
follows the well-established principles of quasi-one-dimensional supersonic
expansion modified by the three-dimensional effects associated with the actual
nozzle geometry. Understanding the flow state at the corrugation initiation station
is essential for predicting subsequent behavior within the corrugated section.

Combustion products entering the throat section from the convergent inlet
possess static temperature of approximately three thousand five hundred Kelvin,
static pressure of approximately thirty-nine bar (corresponding to the critical
pressure ratio of approximately one point eight for the combustion gas specific
heat ratio of one point two four), and velocity equal to the local speed of sound of
approximately one thousand one hundred meters per second. The flow Mach
number equals unity throughout the throat plane, with small spatial variations
associated with boundary layer displacement effects near the walls.

As the flow expands through the upstream smooth portion of the divergent
section, it accelerates continuously while static pressure and temperature
decrease in accordance with the isentropic expansion relations. At the corrugation
initiation station located at z equals positive one hundred seventy-one
millimeters, the flow has achieved Mach number of approximately two point one,
static pressure has decreased to approximately five point three bar, and static
temperature has decreased to approximately two thousand two hundred Kelvin.

The boundary layer at the corrugation initiation station has developed through the
combined influences of the favorable pressure gradient in the convergent section,
the adverse pressure gradient in the subsonic portion of the throat region, and the
favorable pressure gradient of the supersonic expansion. For the turbulent
boundary layer conditions characteristic of rocket nozzle Reynolds numbers
(throat Reynolds number of approximately fifteen million based on throat
diameter and sonic conditions), the boundary layer momentum thickness at the
corrugation initiation station equals approximately zero point three five
millimeters.

The displacement thickness, representing the effective outward displacement of
the inviscid flow due to the velocity deficit within the boundary layer, equals
approximately zero point nine millimeters at the corrugation initiation station.
This displacement thickness is incorporated into the geometric design through
corresponding reduction of the physical wall radius relative to the nominal
inviscid flow boundary, ensuring that the effective area ratio for the inviscid core
flow matches the design intent.

The shape factor, defined as the ratio of displacement thickness to momentum
thickness, equals approximately two point six at the corrugation initiation station.
This value falls within the range characteristic of attached turbulent boundary
layers under moderate favorable pressure gradient conditions, confirming that the
boundary layer entering the corrugated section possesses robust attached
character with substantial resistance to separation.

The velocity profile within the boundary layer follows the law-of-the-wall
formulation appropriate for high-speed compressible turbulent flow. In the
immediate vicinity of the wall, the velocity increases linearly with distance from
the wall surface according to the viscous sublayer relationship. At greater
distances, the velocity profile transitions through a buffer region to the
logarithmic overlap layer where velocity varies as the natural logarithm of wall
distance. At still greater distances, the velocity profile departs from the
logarithmic relationship and blends smoothly into the freestream velocity at the
boundary layer edge.

The turbulence intensity at the boundary layer edge equals approximately two
point five percent at the corrugation initiation station, representing the residual
fluctuation level that persists from the combustion chamber flow and subsequent
acceleration through the nozzle. This turbulence level influences the subsequent
development of mixing layers at the interface between the exhaust jet and
ambient fluid, with higher turbulence promoting more rapid mixing but also
potentially contributing to flow instabilities under certain conditions.

The static temperature at the wall surface within the upstream smooth section is
governed by the balance between convective heat transfer from the hot
combustion gases and heat removal by the regenerative cooling system. For the
representative implementation with hydrocarbon fuel regenerative cooling, wall
temperature varies from approximately nine hundred Kelvin near the throat,
where heat flux is maximum, to approximately seven hundred Kelvin at the
corrugation initiation station, where the reduced gas temperature and density
diminish convective loading.

The flow entering the corrugated section encounters progressively increasing
geometric perturbation as it advances downstream, generating the three-
dimensional flow patterns that constitute the essential mechanism of the present
invention. The physics governing this three-dimensional flow development
encompasses multiple interacting phenomena including supersonic wave

patterns, secondary flow generation, vortex development, and boundary layer
response to three-dimensional pressure gradients.

As the supersonic flow approaches a lobe peak, it encounters a wall contour that
deflects the flow radially inward relative to the trajectory it would follow along
the mean axisymmetric expansion surface. This inward deflection constitutes a
compressive disturbance that generates an oblique shock wave emanating from
the wall and propagating inward toward the nozzle axis. The shock angle relative
to the incoming flow direction depends upon the local Mach number and the
magnitude of the wall deflection, with stronger deflections producing shock
waves at greater angles to the flow direction.

For the amplitude distribution of the representative implementation, the wall
deflection at lobe peaks increases progressively from zero at the corrugation
initiation station to approximately five degrees at the exit plane. At the local
Mach number of two point one prevailing at the corrugation initiation station,
even small deflection angles generate weak oblique shock waves that propagate
inward at angles of approximately fifty-five degrees relative to the flow
direction. At the higher Mach numbers prevailing near the exit (approximately
Mach two point seven for the representative area ratio), the shock angles
decrease to approximately forty degrees for the same deflection magnitude.

Simultaneously with the compression at lobe peaks, the flow adjacent to lobe
troughs encounters a wall contour that deflects the flow radially outward,
creating an expansion process that reduces local pressure and increases local
velocity. This expansion occurs through a continuous Prandtl-Meyer fan rather
than through a discrete wave discontinuity, with the fan angle span depending
upon the total turning angle and local Mach number.

The juxtaposition of compression at peaks and expansion at troughs creates a
circumferentially-varying pressure distribution that constitutes the primary driver
of secondary flow within the corrugated section. The pressure at lobe peaks
exceeds the pressure at lobe troughs by an amount that increases with the local
lobe amplitude, reaching values on the order of one point five bar at the exit
plane for the representative implementation. This pressure differential creates a
circumferential pressure gradient that accelerates fluid from peak regions toward
trough regions along paths in the circumferential-radial plane perpendicular to
the primary axial flow direction.

The secondary flow driven by the circumferential pressure gradient rolls up into
streamwise-oriented vortical structures that wrap helically around the nozzle axis
as they convect downstream with the primary flow. Each lobe peak generates a
counter-rotating vortex pair with the two vortices positioned symmetrically on
opposite sides of the peak centerline. The vortex on the clockwise side of the
peak (when viewed from downstream) rotates in the counter-clockwise direction,
while the vortex on the counter-clockwise side rotates clockwise.

The strength of the generated vortices, measured by circulation magnitude,
increases with both the local pressure differential and the axial extent over which
the pressure gradient acts. For the progressive amplitude growth characteristic of
the present invention, vortex strength builds continuously through the corrugated
section rather than achieving full strength at a single initiation station. This
distributed vortex development creates more robust vortical structures with
greater resistance to disruption by turbulent fluctuations or adverse pressure
gradients.

The circulation of individual vortices at the exit plane reaches values of
approximately twelve square meters per second for the representative
implementation. This circulation magnitude creates tangential velocities within
the vortex cores of approximately one hundred fifty meters per second, sufficient
to substantially distort the circular cross-section of the exhaust jet into the lobed
pattern characteristic of mixer nozzles.

The oblique shock waves generated at individual lobe peaks propagate inward
across the flow field, eventually encountering shock waves generated at other
lobe peaks and interacting through the wave intersection processes described by
classical supersonic flow theory. For the eight-lobe configuration, eight shock
waves propagate inward from the eight peak locations, creating a complex
pattern of shock intersections, reflections, and transmitted waves.

The shock intersection pattern visible in cross-sectional planes perpendicular to
the nozzle axis exhibits the characteristic double-diamond structure referenced in
the prior art literature. At stations near the corrugation initiation where lobe
amplitudes remain small, the eight individual shock waves are distinguishable as
separate features, though closely spaced. Progressing downstream, the shock
waves strengthen as lobe amplitudes increase, and the shock intersection points
move radially inward as the accumulated flow deflection increases.

At an axial station approximately midway through the corrugated section, the
shock intersection geometry achieves the fully-developed double-diamond
pattern comprising eight primary shock segments extending from the lobe peaks
toward the axis, eight reflected shock segments propagating outward from the
intersection points, and a central region of complex wave interactions near the
axis. This double-diamond pattern is most clearly visible in schlieren
photographs or computational visualizations of the density gradient field.

As the flow continues downstream and exits the nozzle, the shock pattern
undergoes progressive coalescence into simpler unified structures. The eight
individual peak-generated shocks and their associated reflections merge through
mutual interaction, eventually forming a single approximately conical shock
surface surrounding the exhaust jet. This single-diamond pattern persists into the

New York General Group 3

Multi-Stage Propulsion System with Variable-Geometry Corrugate Lobe Exhaust Architecture for Enhanced Supersonic Thrust Vectoring and Mixing Efficiency

downstream plume, gradually weakening through expansion and viscous
dissipation until the shock structure eventually disappears entirely at sufficient
distance downstream.

The coalescence process from double-diamond to single-diamond pattern occurs
over an axial distance of approximately two to four exit diameters downstream of
the exit plane, depending upon the nozzle pressure ratio and ambient conditions.
At nozzle pressure ratios near the design value of fifty, the coalescence occurs
relatively rapidly due to the strong shock waves and their vigorous interaction. At
lower nozzle pressure ratios corresponding to lower-altitude operation, weaker
shock waves coalesce more gradually.

The energy dissipated through the shock coalescence process represents a
combination of useful conversion from small-scale oscillatory motion to
organized vortical motion and undesirable conversion to thermal energy through
irreversible shock heating. The sixty-percent corrugation extent of the present
invention is specifically selected to achieve beneficial shock pattern development
and vortex generation while minimizing the internal shock dissipation losses that
would accumulate with more extended corrugation.

The boundary layer within the corrugated section experiences three-dimensional
pressure gradients, streamline curvature, and centrifugal effects that profoundly
modify its development relative to the simple attached expansion characteristic
of conventional axisymmetric nozzles. Understanding and controlling the
boundary layer behavior is essential for achieving the mixing enhancement
objectives of the present invention without incurring the severe performance
penalties associated with flow separation.

Upon entering the corrugated section, the boundary layer immediately begins
responding to the emerging circumferential pressure gradient. In regions
approaching lobe peaks, the boundary layer experiences favorable pressure
gradient as flow accelerates toward the locally converging geometry. This
favorable gradient thins the boundary layer and increases the near-wall velocity,
enhancing resistance to separation. In regions approaching lobe troughs, the
boundary layer experiences adverse pressure gradient as flow decelerates in
response to the locally diverging geometry. This adverse gradient thickens the
boundary layer and reduces near-wall velocity, diminishing separation resistance.

The magnitude of the circumferential pressure gradient increases with axial
position through the corrugated section as lobe amplitude grows. At the
corrugation initiation station where amplitude equals zero, no circumferential
gradient exists and the boundary layer continues its axisymmetric development.
At the exit plane where amplitude reaches maximum value, the circumferential
pressure gradient reaches approximately zero point three bar per radian, creating
substantial local variations in boundary layer properties.

The boundary layer momentum thickness at the exit plane varies
circumferentially from approximately zero point four five millimeters at lobe
peaks to approximately zero point seven five millimeters at lobe troughs. This
factor-of-one-point-seven variation in momentum thickness around the
circumference reflects the integrated history of favorable and adverse pressure
gradients experienced by different circumferential portions of the boundary layer
as they traverse the corrugated section.

The shape factor provides a sensitive indicator of separation susceptibility, with
values exceeding approximately three point zero indicating impending separation
for turbulent boundary layers. At lobe peak locations, the shape factor decreases
through the corrugated section from its initial value of two point six, reaching
approximately two point three at the exit plane. This decrease reflects the
stabilizing influence of the favorable pressure gradient and streamline
convergence at peak locations. At lobe trough locations, the shape factor
increases through the corrugated section, potentially approaching critical values
if the divergence angle exceeds acceptable limits.

The critical constraint on corrugation geometry arises from the requirement to
maintain shape factor below separation threshold throughout the corrugated
section. This constraint translates into limits on the local wall divergence angle at
trough locations, which in turn constrains the rate of amplitude growth. For the
representative implementation, the maximum wall divergence angle at trough
locations equals twelve degrees, occurring near the exit plane where amplitude
growth rate is greatest. This angle provides adequate margin below the separation
angle of approximately fourteen degrees established by experimental
investigation of turbulent boundary layers under comparable conditions.

The sixty-percent corrugation extent directly influences the achievable
divergence angles by determining the axial distance available for amplitude
growth. Reducing the corrugation extent below sixty percent while maintaining
the same exit plane amplitude would require more aggressive amplitude growth
rates and correspondingly steeper divergence angles, potentially exceeding the
separation threshold and precipitating the boundary layer detachment that would
severely degrade nozzle performance.

The interaction between shock waves and the boundary layer creates additional
separation vulnerability at specific locations within the corrugated section. Where
oblique shock waves impinge upon the boundary layer at the wall surface, the
sudden pressure rise across the shock can trigger separation even when the
underlying geometric pressure gradient would maintain attached flow. The most
critical shock-boundary layer interaction locations occur at the wall opposite
from the lobe peaks, where the peak-generated oblique shocks reach the wall
after crossing the central flow region.

For the eight-lobe configuration, shock impingement on the wall at trough
locations begins at approximately twenty percent of the corrugation extent
downstream of the initiation station, where the developing shock waves first
reach sufficient strength and propagation distance to interact with the opposite
wall. The impingement pressure rise at this initial contact equals approximately
one point one five times the upstream pressure, insufficient to cause separation of
the healthy boundary layer prevailing at this location.

As the flow progresses downstream and shock strength increases, the
impingement pressure ratio increases and the separation margin decreases. At the
exit plane, the shock impingement pressure ratio at trough locations reaches
approximately one point four, which would cause separation of a boundary layer
in the incipient separation condition but is resisted by the attached boundary
layer present due to the favorable axial pressure gradient of supersonic
expansion.

The three-dimensional character of the boundary layer within the corrugated
section creates cross-flow velocity components that transport momentum
circumferentially around the lobe contours. This cross-flow, driven by the
circumferential pressure gradient, tends to convect high-momentum fluid from
peak regions toward trough regions, partially compensating for the adverse
pressure gradient effects at the troughs. The cross-flow magnitude reaches
approximately fifteen percent of the primary axial velocity at positions near the
wall in the mid-circumference regions between peaks and troughs.

The beneficial cross-flow transport is most effective when the corrugated section
provides sufficient axial distance for the three-dimensional boundary layer
equilibration to develop. For corrugation extents significantly less than sixty
percent, the cross-flow has insufficient development length to achieve substantial
momentum transport before the flow exits the nozzle. For corrugation extents
significantly greater than sixty percent, the extended exposure to three-
dimensional pressure gradients can cause the cross-flow to become excessive,
creating locally separated regions at the downstream portions of trough side walls
where the cross-flow must decelerate.

The thermal environment within the corrugated section exhibits three-
dimensional variations that reflect the complex flow physics occurring in this
region. The non-uniform heating distribution creates design challenges for the
thermal management system while simultaneously providing opportunities for
optimization through exploitation of the natural cooling afforded in lower-
heating regions.

The convective heat transfer coefficient at the nozzle wall depends upon the local
flow velocity, density, and temperature, as well as the boundary layer thickness
and turbulence intensity. At lobe peak locations, the locally favorable pressure
gradient creates thinner boundary layers with steeper near-wall velocity
gradients, resulting in higher heat transfer coefficients. At lobe trough locations,
the thicker boundary layers produce lower heat transfer coefficients despite the
nominally similar freestream conditions.

The heat transfer coefficient variation around the circumference at the exit plane
spans from approximately four thousand watts per square meter per Kelvin at
lobe peaks to approximately two thousand five hundred watts per square meter
per Kelvin at lobe troughs, representing a factor-of-one-point-six variation. This
circumferential variation must be accommodated by the thermal management
system to maintain acceptable wall temperatures at peak locations without
overcooling at trough locations.

Shock wave impingement on the wall surface creates localized regions of
intensified heating where the boundary layer compression through the shock
increases local temperature and density while reducing boundary layer thickness.
The impingement heating augmentation reaches maximum values at the
intersection between the shock foot and the wall surface, with gradual recovery
to undisturbed levels over a distance of approximately five to ten boundary layer
thicknesses downstream of the impingement location.

For the representative implementation, shock impingement heating augmentation
at trough locations increases local heat transfer coefficient by factors ranging
from one point three near the corrugation initiation station to one point eight near
the exit plane, reflecting the strengthening shock waves as lobe amplitude grows.
The augmented heat transfer coefficients at shock impingement locations reach
approximately four thousand five hundred watts per square meter per Kelvin near
the exit, comparable to or exceeding the steady-state peak values.

The driving temperature difference for convective heat transfer equals the
difference between the adiabatic wall temperature and the actual wall
temperature maintained by the cooling system. The adiabatic wall temperature
represents the equilibrium temperature that an insulated wall would achieve
under the prevailing flow conditions, accounting for the recovery of kinetic
energy in the boundary layer. For the high-speed flow within the corrugated
section, the adiabatic wall temperature exceeds the static temperature by several
hundred Kelvin due to kinetic energy recovery.

At the exit plane, the static temperature of the expanding combustion gases has
decreased to approximately one thousand six hundred Kelvin, while the adiabatic
wall temperature remains at approximately two thousand one hundred Kelvin due
to the recovery factor of approximately zero point nine characteristic of turbulent
boundary layers. The cooling system maintains wall temperature at
approximately six hundred fifty Kelvin at peak locations where heating is most
intense and at approximately five hundred fifty Kelvin at trough locations where
heating is reduced.

New York General Group 4

Multi-Stage Propulsion System with Variable-Geometry Corrugate Lobe Exhaust Architecture for Enhanced Supersonic Thrust Vectoring and Mixing Efficiency

The heat flux at the wall surface equals the product of heat transfer coefficient
and driving temperature difference. At lobe peak locations near the exit plane, the
heat flux reaches approximately six megawatts per square meter, requiring
vigorous regenerative cooling to maintain acceptable wall temperatures. At lobe
trough locations, the reduced heat transfer coefficient and lower wall temperature
combine to produce heat flux of approximately four megawatts per square meter,
still substantial but more readily managed.

The total heat rejection rate from the corrugated section of the representative
implementation equals approximately two point five megawatts, distributed non-
uniformly over the wall surface with concentration at peak locations and shock
impingement regions. This heat rejection rate must be accommodated by the
regenerative cooling system through appropriate coolant flow rate, flow velocity,
and channel geometry distributions that match the local cooling capability to the
local heating intensity.

The regenerative cooling system for the corrugated section employs a network of
channels that route propellant around the three-dimensional lobe contours while
providing enhanced cooling effectiveness in regions of concentrated thermal
loading. The channel geometry and coolant flow distribution are specifically
tailored to the unique thermal environment of the corrugated lobe configuration.

The cooling channels originate at a manifold located at the nozzle exit plane,
receiving liquid hydrocarbon propellant (RP-1 kerosene for the representative
implementation) at temperature of approximately two hundred ninety Kelvin and
pressure of approximately eighty-five bar. The propellant flows upstream through
the channels in counterflow arrangement relative to the combustion gas flow
direction, absorbing heat from the wall and achieving progressive temperature
increase before exiting at a manifold located upstream of the corrugation
initiation station.

The channel cross-section within the corrugated section varies both axially and
circumferentially to achieve the required distribution of coolant velocity and heat
transfer capability. At lobe peak locations, channel width equals one point eight
millimeters and channel depth equals two point two millimeters, providing cross-
sectional area of approximately four square millimeters. The reduced channel
area at peak locations accelerates the coolant flow, achieving local coolant
velocity of approximately twenty-five meters per second compared to the
average velocity of approximately eighteen meters per second through the overall
cooling circuit.

At lobe trough locations, channel width increases to two point four millimeters
and channel depth increases to two point eight millimeters, providing cross-
sectional area of approximately six point seven square millimeters. This
increased area permits lower coolant velocity of approximately fifteen meters per
second at trough locations, reducing pumping power requirements in regions
where the heating intensity does not require maximum cooling effectiveness.

The channel walls separating adjacent cooling passages provide structural
continuity between the inner hot-gas-side wall and the outer closeout wall. The
channel wall width equals one point zero millimeter throughout the corrugated
section, providing adequate structural capability while minimizing the fin
efficiency losses associated with heat conduction through extended channel
walls. The ratio of channel width to channel wall width plus channel width,
termed the channel fraction, varies from approximately zero point six four at
peak locations to approximately zero point seven one at trough locations.

The heat transfer from the hot wall surface to the flowing coolant occurs through
a series of thermal resistances comprising conduction through the wall thickness,
convection to the coolant in the channel base, and additional convection to the
coolant through the channel sidewalls acting as extended fins. The overall
thermal resistance from hot gas to coolant determines the wall temperature
achieved for given heat flux and coolant temperature conditions.

At lobe peak locations where heat flux is maximum, the thermal design provides
wall-to-coolant temperature difference of approximately three hundred fifty
Kelvin at the exit plane, where coolant temperature equals approximately three
hundred Kelvin after modest heating through the downstream portions of the
cooling circuit. This temperature difference, combined with the local heat
transfer coefficient and wall thickness, maintains hot-side wall temperature at
approximately six hundred fifty Kelvin as previously specified.

At lobe trough locations, the reduced heat flux and increased cooling channel
area combine to produce wall-to-coolant temperature difference of approximately
two hundred fifty Kelvin, maintaining hot-side wall temperature at
approximately five hundred fifty Kelvin. This lower temperature at trough
locations provides additional margin for the somewhat thicker walls required in
these regions for structural reasons.

The coolant pressure drop through the corrugated section totals approximately
three point five bar for the representative implementation, distributed between
frictional losses along the channel length and losses through the entrance and exit
manifolds. The non-uniform velocity distribution creates corresponding non-
uniformity in pressure drop, with the high-velocity peak channels experiencing
somewhat greater pressure drop than the low-velocity trough channels. Manifold
design accommodates this non-uniformity through appropriate sizing of the
distribution passages.

The coolant temperature rise through the corrugated section equals
approximately one hundred twenty Kelvin, increasing coolant temperature from

approximately three hundred Kelvin at the exit plane manifold to approximately
four hundred twenty Kelvin at the upstream manifold. This temperature rise
corresponds to absorption of approximately two point five megawatts at coolant
flow rate of approximately eleven kilograms per second and specific heat of
approximately two thousand joules per kilogram per Kelvin. The heated coolant
proceeds upstream through the smooth divergent section and throat region
cooling circuits before injection into the combustion chamber.

The shock impingement regions present particular thermal management
challenges due to the localized heating augmentation that exceeds the capabilities
of the standard regenerative cooling provisions. The present invention
incorporates enhanced cooling features at these locations to prevent excessive
wall temperatures while avoiding the complexity and mass penalty of uniformly
upgraded cooling throughout the corrugated section.

The shock impingement locations are predictable from the lobe geometry and
flow conditions, enabling targeted placement of enhanced cooling features. For
the eight-lobe configuration, shock impingement occurs at trough locations along
eight axial lines positioned at the circumferential centers of the eight troughs.
The impingement begins at approximately twenty percent of the corrugation
extent downstream of the initiation station and extends to the exit plane, with
impingement intensity increasing in the downstream direction as shock strength
grows.

The enhanced cooling at shock impingement locations employs turbulence
promoters within the cooling channels that increase local heat transfer coefficient
through disruption of the thermal boundary layer. Transverse ribs machined into
the channel base at two millimeter intervals trip the coolant boundary layer,
creating local flow separation and reattachment patterns that enhance mixing
between the near-wall coolant and the cooler core flow.

The turbulence promoter rib height equals zero point three millimeters,
approximately ten percent of the channel depth, providing effective boundary
layer disruption without excessive flow blockage that would cause unacceptable
pressure drop increase. The ribs extend across the full channel width with square
cross-section profile. The resulting heat transfer augmentation reaches a factor of
approximately two point two relative to smooth channel performance, enabling
accommodation of the shock-induced heating augmentation without requiring
increased coolant flow rate or channel geometry modification.

The turbulence promoters are positioned along an axial extent of approximately
one hundred millimeters at each shock impingement location, centered on the
predicted impingement line and spanning sufficient circumferential extent to
accommodate the finite width of the shock-affected zone. The promoters
terminate upstream and downstream of the shock impingement region to avoid
unnecessary pressure drop penalty where heating augmentation is not required.

The aggregate pressure drop contribution of the turbulence promoters equals
approximately zero point eight bar, increasing total cooling circuit pressure drop
to approximately four point three bar. This additional pressure drop is
accommodated within the propellant feed system design through appropriate
turbopump discharge pressure specification.

Alternative embodiments of the enhanced cooling for shock impingement regions
employ impingement cooling, wherein coolant jets directed perpendicular to the
wall surface create localized high-intensity cooling at the impingement points.
This approach provides potentially superior heat transfer performance but
requires more complex channel geometry including dedicated supply passages
and spent coolant removal provisions. The impingement cooling approach is
particularly advantageous for applications requiring exceptionally high wall heat
flux tolerance.

The structural design of the corrugated lobe section addresses the unique loading
patterns arising from three-dimensional supersonic flow through the non-
axisymmetric geometry. The loading sources include internal pressure from the
combustion gases, thermal stress from temperature gradients through the wall
thickness and around the circumference, and inertial loads from vehicle
acceleration.

The internal pressure loading creates membrane stresses in the wall that resist the
tendency of the pressure to expand the structure radially. For axisymmetric
cylinders, the hoop stress equals the product of pressure, radius, and wall
thickness inverse. For the non-circular cross-sections of the corrugated geometry,
the local hoop stress varies circumferentially in inverse proportion to the local
radius of curvature.

At lobe peak locations, the local radius of curvature in the circumferential
direction exceeds the mean radius due to the outward bulge of the peak geometry.
For the representative implementation with eighteen millimeter amplitude at the
exit plane and mean radius of one hundred sixty-two millimeters, the radius of
curvature at peak centers equals approximately two hundred ten millimeters,
creating local hoop stress reduction of approximately twenty-three percent
relative to an axisymmetric design of equivalent mean radius and wall thickness.

At lobe trough locations, the local radius of curvature falls below the mean radius
due to the inward indentation of the trough geometry. The radius of curvature at
trough centers equals approximately one hundred twenty-five millimeters,
creating local hoop stress increase of approximately thirty percent relative to
axisymmetric conditions. This stress concentration at trough locations
necessitates the increased wall thickness specified for these regions to maintain
consistent stress levels around the circumference.

New York General Group 5

Multi-Stage Propulsion System with Variable-Geometry Corrugate Lobe Exhaust Architecture for Enhanced Supersonic Thrust Vectoring and Mixing Efficiency

The internal pressure within the corrugated section varies axially from
approximately five bar near the corrugation initiation station to approximately
one point two bar at the exit plane, following the supersonic expansion process.
The circumferential pressure variation due to shock and expansion effects adds
local variations of approximately plus or minus zero point three bar to the mean
axial value. The structural analysis considers the worst-case combination of mean
pressure and circumferential variation at each axial station.

The maximum hoop stress at the exit plane, where pressure is lowest but wall
thickness is also reduced, equals approximately seventy megapascals for the
representative implementation. This stress level occurs at trough locations where
the increased thickness partially compensates for the curvature-induced stress
concentration. At peak locations, the reduced stress due to favorable curvature
combines with the thinner wall to produce comparable stress levels.

Thermal stresses arise from the temperature gradients that inevitably accompany
the heat transfer process from hot combustion gases to regenerative coolant. The
temperature gradient through the wall thickness creates differential expansion
between the hot inner surface and the cooler outer surface, generating bending
stresses that add to the membrane stresses from pressure loading.

For the representative wall thickness of three point five millimeters and
temperature difference of approximately two hundred Kelvin through the
thickness at peak locations, the thermal bending stress equals approximately sixty
megapascals. This thermal stress adds algebraically to the pressure-induced
membrane stress, with the sign depending upon whether the thermal gradient
creates tension or compression at the surface of interest.

At the hot inner surface, the thermal stress component is compressive as the
constrained hot material attempts to expand against the cooler outer layers. At the
cooler outer surface, the thermal stress component is tensile. The total stress at
the inner surface equals the membrane tension minus the thermal compression,
while the total stress at the outer surface equals the membrane tension plus the
thermal tension. The outer surface therefore experiences the maximum total
tensile stress.

The circumferential temperature variation between peak and trough locations
creates additional thermal stress through the differential expansion of adjacent
regions at different temperatures. The temperature difference of approximately
one hundred Kelvin between peak and trough at the exit plane creates
circumferential thermal stress of approximately forty megapascals, adding to the
other stress components at the transition regions between peaks and troughs.

The material selection for the corrugated section balances the competing
requirements of high-temperature strength, thermal conductivity, oxidation
resistance, and compatibility with the manufacturing processes. For the
representative implementation operating with hydrocarbon fuel cooling and
moderate exit plane wall temperatures, the selected material is Inconel 718
nickel-base superalloy. This material provides yield strength exceeding three
hundred megapascals at operating temperature, thermal conductivity of
approximately eighteen watts per meter per Kelvin enabling effective heat
transfer to the coolant, and excellent resistance to oxidation and hot corrosion.

Alternative materials for applications with different requirements include copper
alloys for enhanced thermal conductivity when cooling margin is critical,
refractory metals such as niobium or molybdenum alloys for applications
requiring higher wall temperature tolerance, and ceramic matrix composites for
applications pursuing maximum temperature capability with reduced cooling
requirements.

The fatigue life analysis addresses the cyclic loading experienced during repeated
engine firings over the intended operational lifetime. The stress cycles from zero
(engine off) to maximum operating stress (full thrust) with each firing, with
additional smaller cycles from thrust transients during startup and shutdown. For
the representative implementation designed for one hundred firing cycles with
factor of safety of four, the allowable alternating stress at mean stress of one
hundred megapascals equals approximately one hundred twenty megapascals
based on the Inconel 718 fatigue properties at operating temperature.

The actual alternating stress equals one-half the stress range from zero to
maximum, or approximately sixty-five megapascals for the maximum total stress
of one hundred thirty megapascals at the outer surface. The comparison of actual
alternating stress to allowable alternating stress confirms adequate fatigue life
margin for the intended application.

The complex three-dimensional geometry of the corrugated lobe section is
manufactured using selective laser melting additive manufacturing technology,
wherein successive thin layers of metal powder are selectively melted by a
focused laser beam to build up the complete component geometry. This
manufacturing approach provides inherent capability for complex internal
features including the regenerative cooling channels that would require extensive
machining operations if produced by conventional methods.

The manufacturing begins with generation of the digital solid model representing
the complete corrugated section geometry including the three-dimensional outer
surface, the precisely-defined inner flow surface, and the internal cooling channel
network. The solid model is created using computer-aided design software with
the geometric parameters specified elsewhere in this description encoded through
parametric feature definitions. The model is subsequently processed through
specialized build preparation software that slices the geometry into thin

horizontal layers (typically thirty to fifty micrometers thickness) and generates
the laser scan paths for each layer.

The build process employs Inconel 718 powder with particle size distribution
ranging from fifteen to forty-five micrometers. The powder is produced by gas
atomization of prealloyed ingot material, creating spherical particles with
controlled composition and minimal satellite particle attachment. The powder is
characterized prior to use through particle size analysis, chemical composition
verification, and flow behavior testing to confirm suitability for the build process.

The selective laser melting machine employed for component production
incorporates a build chamber with dimensions sufficient to accommodate the
corrugated section component (build volume of at least five hundred millimeters
diameter by four hundred fifty millimeters height for the representative
implementation). The build chamber is maintained under high-purity argon
atmosphere with oxygen content below fifty parts per million to prevent
oxidation of the molten metal during processing.

The laser system provides beam power of four hundred to one thousand watts
with spot size of approximately eighty micrometers at the powder bed surface.
The laser wavelength of one thousand seventy nanometers couples efficiently
with the Inconel 718 powder, achieving greater than forty percent absorption of
incident energy. The scanning system enables beam positioning accuracy of ten
micrometers and maximum scanning velocity of seven meters per second, though
typical processing velocity ranges from eight hundred to one thousand two
hundred millimeters per second for the optimal melt pool characteristics.

The build process proceeds layer by layer, with each cycle comprising powder
deposition, laser scanning, and platform lowering. The recoater blade or roller
spreads a uniform layer of powder across the build surface at the specified layer
thickness. The laser then scans the regions corresponding to solid material in the
current layer slice, melting the powder and fusing it to the previously solidified
layer below. After scanning is complete, the build platform lowers by the layer
thickness and the next powder layer is deposited.

The scanning strategy for each layer employs a combination of contour scans and
hatching scans optimized for the specific geometric features present. Contour
scans trace the outer and inner boundaries of the solid regions, establishing the
surface geometry with minimum deviation from the intended contour. Hatching
scans fill the interior regions with overlapping melt tracks oriented at angles that
change between layers to avoid directional texture development. The hatch
spacing of approximately eighty micrometers provides sufficient overlap between
adjacent melt tracks to achieve fully dense material.

The internal cooling channels are created through absence of laser scanning in
the channel regions, leaving unfused powder that is subsequently removed. The
channel geometry must accommodate the powder removal requirement, avoiding
enclosed cavities and providing adequate access for powder extraction. For the
representative implementation, the channels connect to powder removal ports at
both manifold locations, enabling extraction of unfused powder through
vibration-assisted drainage and vacuum suction.

The total build time for the corrugated section component equals approximately
sixty-five hours for the representative implementation, including all layers from
the exit plane manifold through the corrugation initiation station junction. The
build proceeds with the component axis oriented vertically and the exit plane
facing downward, minimizing the overhang angles for the lobe peak surfaces and
reducing the support structure requirements.

Support structures are required for surfaces oriented at angles less than
approximately forty-five degrees from horizontal to prevent distortion and
collapse of the overhanging features. For the corrugated section geometry,
support structures are generated beneath the lobe peak surfaces where the wall
angle approaches horizontal at the peaks. The support structures are designed for
subsequent removal through mechanical means, with access provided through the
open exit plane and the channel manifold locations.

Following build completion, the component remains attached to the build plate
through the support structure foundation. Initial powder removal is performed
while the component remains attached, using vibration and suction to extract the
unfused powder from the internal channels and from the open regions
surrounding the component. Powder removal verification employs computed
tomographic scanning or endoscopic inspection to confirm complete extraction
from all internal passages.

The component is then separated from the build plate through wire electrical
discharge machining, cutting through the support structure foundation to release
the free-standing component. The residual support structure material attached to
the component is removed through a combination of manual breaking, grinding,
and localized machining, with care taken to avoid damage to the functional
surfaces.

Heat treatment is performed to relieve residual stresses from the build process
and to achieve the specified mechanical properties. The standard heat treatment
for Inconel 718 comprises solution annealing at nine hundred fifty to one
thousand degrees Celsius followed by two-step aging at seven hundred twenty
degrees Celsius and six hundred twenty degrees Celsius. This heat treatment
precipitates the gamma-prime and gamma-double-prime strengthening phases
that provide the high-temperature strength required for the propulsion
application.

New York General Group 6

Multi-Stage Propulsion System with Variable-Geometry Corrugate Lobe Exhaust Architecture for Enhanced Supersonic Thrust Vectoring and Mixing Efficiency

Post-build machining operations are performed on critical surfaces where the as-
built surface finish or dimensional tolerance is insufficient. The inner flow
surface of the corrugated section requires surface finish better than six point three
micrometers Ra to minimize boundary layer transition effects and flow losses.
The as-built surface finish of fifteen to twenty micrometers Ra is improved
through abrasive flow machining, wherein abrasive-laden viscoelastic media is
forced through the internal passage to remove surface irregularities.

The manifold interface surfaces require machining to achieve the flatness and
surface finish necessary for sealing and alignment with adjacent components.
These surfaces are machined using multi-axis computer numerical control
milling with cutting parameters appropriate for the hardened Inconel 718
material. The manifold bolt hole patterns are produced by drilling and reaming to
achieve the positional accuracy and hole quality required for the fastener
installation.

The quality assurance program for the corrugated section component
encompasses incoming material verification, in-process monitoring, and post-
build inspection to ensure compliance with all dimensional, structural, and
functional requirements. The program is designed to detect both systematic
process variations and random defects that could compromise component
performance or reliability.

Incoming powder material is inspected for chemical composition, particle size
distribution, particle morphology, and flow characteristics prior to acceptance for
production use. Chemical composition is verified through inductively-coupled
plasma optical emission spectrometry for major alloying elements and
combustion analysis for carbon and sulfur content. The composition must fall
within the ranges specified by the Inconel 718 material specification, with
particular attention to elements affecting weldability such as boron, sulfur, and
phosphorus.

Particle size distribution is measured through laser diffraction analysis,
confirming that the D10, D50, and D90 values (representing the particle sizes at
which ten, fifty, and ninety percent of the distribution falls below) meet the
specified requirements. Excessively fine particles can cause powder bed density
problems and spattering during laser processing, while excessively coarse
particles create surface roughness issues and may not fully melt during the
scanning process.

Powder morphology is examined through scanning electron microscopy,
verifying the spherical shape and absence of satellite particles that would
compromise powder flow and packing characteristics. Powder flow behavior is
quantified through Hall flowmeter testing per ASTM B213, with flow rate
requirements ensuring consistent powder bed deposition during the build process.

In-process monitoring during the additive build employs multiple sensing
systems to detect anomalies that could indicate developing defects or process
drift. Melt pool monitoring using photodiode and high-speed camera systems
observes the emission intensity and geometry of the melt pool during laser
scanning. Deviations from the expected melt pool characteristics, such as
spattering, keyholing, or insufficient melting, trigger alerts for operator
evaluation and potential process parameter adjustment.

Layer imaging after each powder deposition captures the powder bed surface
condition before laser scanning. Image analysis algorithms detect recoating
defects, powder clumps, and other anomalies that could cause layer-to-layer
defects in the solidified material. Layer imaging after laser scanning detects
surface irregularities, incomplete fusion, and geometric deviations from the
expected layer boundaries.

Build plate temperature monitoring ensures consistent thermal conditions
throughout the extended build time. The build plate temperature is maintained at
approximately eighty degrees Celsius to reduce residual stress development
while avoiding powder cake formation that would complicate powder removal.
Temperature variations exceeding specified limits trigger process interruption for
investigation.

Post-build inspection begins with comprehensive dimensional verification using
computed tomographic scanning. The CT scan acquires complete three-
dimensional density data throughout the component volume, enabling
reconstruction of both internal and external geometries. Dimensional analysis
compares the reconstructed geometry with the design intent, quantifying
deviations in wall thickness, channel dimensions, lobe profile, and overall
dimensional characteristics.

The CT scan data simultaneously enables detection of internal defects including
porosity, lack of fusion, cracking, and entrapped unfused powder. The acceptance
criteria specify maximum defect sizes and defect population densities that are
demonstrated to be compatible with the structural and fatigue requirements.
Defects exceeding the acceptance criteria require disposition through engineering
evaluation and potential component rejection.

Surface inspection of the inner flow surface employs borescopic examination
following surface finish improvement through abrasive flow machining. The
borescope provides magnified visual inspection of the surface condition,
detecting residual roughness, machining artifacts, or surface damage that could
affect aerodynamic performance. Surface roughness is quantified through
profilometer measurements at accessible locations, with correlation to full-
surface roughness distribution based on process characterization data.

Leak testing verifies the integrity of the cooling channel walls, confirming the
absence of through-wall defects that would permit combustion gas ingestion into
the cooling circuit or coolant leakage into the flow path. The test procedure
applies helium gas to the cooling circuit at pressure exceeding the maximum
operating coolant pressure while the flow path interior is maintained under
vacuum. Helium mass spectrometer detection at the flow path provides
sensitivity to leakage rates as low as ten to the negative ninth standard cubic
centimeters per second, ensuring detection of even minute through-wall paths.

Proof pressure testing demonstrates structural capability by applying hydrostatic
pressure to the cooling circuit at one hundred fifty percent of maximum operating
pressure. The test pressure is held for duration of at least five minutes while
monitoring for leakage, permanent deformation, or rupture. Successful
completion of proof testing without any of these failure modes demonstrates
adequate structural capability for the intended application.

Material property verification employs test coupons built simultaneously with the
production component using identical processing parameters. The test coupons
undergo tensile testing, hardness testing, and metallographic examination to
confirm that the material properties achieved in the production build meet all
specification requirements. The test coupon location on the build plate and test
coupon orientation relative to the build direction are selected to provide
representative sampling of the property variations occurring within the
production component.

The corrugated section component is integrated with the other propulsion system
elements through mechanical and fluidic interfaces that accommodate the
thermal expansion, pressure loading, and assembly tolerance stack-up occurring
in the complete system. The integration process ensures proper alignment, sealed
interfaces, and structural continuity throughout the nozzle assembly.

The upstream interface connects the corrugated section to the smooth divergent
section through a bolted flange joint with metal seal. The flange faces are
machined to provide flatness within twenty-five micrometers to ensure uniform
seal loading around the circumference. The metal seal, fabricated from silver-
plated Inconel 718 material, deforms plastically under bolt preload to conform to
minor surface irregularities and provide reliable sealing against both coolant
leakage and combustion gas intrusion.

The bolt pattern comprises twenty-four M8 bolts on a bolt circle diameter of two
hundred forty millimeters, providing sufficient clamping force to maintain seal
compression under all operating and transient conditions. The bolt preload of
twenty-five kilonewtons per bolt creates interface compression of approximately
two hundred megapascals at the seal location, exceeding the yield strength of the
silver plating and achieving the required plastic deformation for effective sealing.

The coolant flow interfaces at the upstream and downstream manifolds connect
to the propulsion system coolant circuit through welded tube joints. The manifold
ports accept tube stubs of fifteen millimeters outer diameter and one point five
millimeters wall thickness, fabricated from the same Inconel 718 material as the
corrugated section component. The tubes are joined by orbital gas tungsten arc
welding with automated travel speed and wire feed to achieve consistent weld
quality around the circumference.

Weld inspection employs radiographic examination per aerospace welding
quality standards, verifying complete fusion, absence of porosity or cracking, and
proper weld profile geometry. Liquid penetrant inspection of the external weld
surface detects surface-breaking defects that might not be visible in the
radiographic examination.

The assembled nozzle undergoes system-level proof testing that verifies the
integrity of all joints and interfaces under combined pressure and thermal
loading. The proof test applies coolant pressure and flow while the inner flow
surface is pressurized with inert gas to simulate the combustion gas loading.
Temperature simulation is achieved through electrical resistance heating of the
inner surface, creating wall temperature gradients representative of operating
conditions.

Functional testing of the cooling circuit verifies proper flow distribution through
measurement of pressure drop and outlet temperature distribution. Flow
visualization using tracer injection and observation at manifold outlets confirms
that all cooling channels receive proper flow without blockage or excessive
bypassing. Thermal response testing measures the transient temperature behavior
during simulated startup and shutdown conditions, verifying adequate cooling
capacity under all operating modes.

Hot-fire testing of the complete propulsion system provides the final verification
of corrugated section performance under actual operating conditions. The initial
hot-fire tests employ short-duration firings (two to five seconds) at reduced
chamber pressure to verify basic functionality and stability before progressing to
full-duration firings at full thrust. Instrumentation including thermocouples at
multiple wall locations, pressure transducers in the cooling circuit, and high-
speed photography of the exhaust plume provides comprehensive data for
performance verification and model validation.

The characteristic shock patterns predicted for the corrugated lobe geometry are
verified through schlieren photography or shadowgraph imaging of the exhaust
plume during hot-fire testing. The double-diamond to single-diamond shock
coalescence behavior is observable in the plume images, confirming that the
design intent has been achieved and the analytical predictions are validated by
the actual hardware performance.

New York General Group 7

Multi-Stage Propulsion System with Variable-Geometry Corrugate Lobe Exhaust Architecture for Enhanced Supersonic Thrust Vectoring and Mixing Efficiency

Thrust measurement during hot-fire testing verifies that the corrugated lobe
configuration achieves the expected performance relative to conventional nozzle
designs. The mixing enhancement and shock management benefits must be
realized without unacceptable sacrifice in propulsive efficiency, as confirmed by
comparison of measured specific impulse with predictions and with reference
data from equivalent conventional nozzle tests.

The operational use of the propulsion system incorporates the corrugated lobe
section as an integrated element of the complete launch vehicle propulsion
architecture. The operational procedures address all phases of use from pre-flight
checkout through launch, flight, and post-flight assessment.

Pre-flight checkout of the corrugated section component focuses on verification
of cooling circuit integrity and cleanliness. Leak testing using helium trace gas
confirms the continued integrity of all coolant passage walls and interface seals
following any vehicle handling or transportation. Borescopic examination of the
inner flow surface verifies the absence of foreign object debris that could affect
flow quality or create downstream damage.

Coolant circuit conditioning removes any moisture or contamination that may
have accumulated during storage or handling. The conditioning procedure flows
dry nitrogen through the cooling passages at elevated velocity, entraining and
removing particulate matter while the low dew point of the nitrogen promotes
evaporation of any moisture present. Circuit cleanliness is verified through
particle count measurement on the conditioning effluent.

Launch countdown procedures include thermal conditioning of the nozzle
assembly to achieve uniform temperature distribution prior to ignition. For
cryogenic propellant systems, the thermal conditioning addresses the significant
temperature gradients that develop between cryogenic-wetted components and
ambient-temperature elements. The corrugated section, located downstream of
the main cryogenic contact regions, typically equilibrates with local ambient
conditions but may require attention to prevent condensation if humid launch site
conditions exist.

Engine start sequence initiates coolant flow prior to ignition to establish the
thermal protection before combustion gases contact the wall surfaces. The
coolant flow reaches full design flow rate within approximately fifty
milliseconds of the start command, with ignition following approximately two
hundred milliseconds later. This sequencing ensures that the thermal protection is
fully established before the most thermally demanding conditions occur during
the initial ignition transient.

During powered flight, the corrugated section operates within the thermal and
structural design envelope established through the analysis and testing described
previously. The wall temperatures remain within the demonstrated capability of
the materials and cooling system, with transient excursions during thrust
transients remaining within acceptable limits. The shock patterns evolve as
external ambient pressure decreases during ascent, but the fundamental double-
diamond to single-diamond coalescence behavior persists throughout the
atmospheric flight phase.

At stage separation for multi-stage vehicles, the lower-stage engines shut down
through propellant valve closure. The cooling flow continues briefly after
combustion termination to remove residual heat from the nozzle walls before
coolant flow is also terminated. The thermal mass of the nozzle structure absorbs
the residual heat without excessive temperature rise during the post-shutdown
thermal soak.

Upper-stage ignition occurs after stage separation, with the upper-stage
corrugated section designed for the vacuum operating environment. The absence
of ambient pressure eliminates the external flow interactions that influence
lower-stage performance, and the corrugation parameters are optimized
accordingly as described elsewhere in this disclosure.

Post-flight assessment for reusable propulsion systems includes inspection of the
corrugated section for any degradation or damage accumulated during the
mission. Visual examination of accessible surfaces detects any evidence of
erosion, thermal damage, or foreign object impact. Leak testing verifies
continued cooling circuit integrity. Dimensional verification confirms that no
permanent deformation has occurred under the flight loading conditions.

Refurbishment procedures address any wear or damage identified during post-
flight assessment. Minor surface irregularities on the inner flow surface are
corrected through localized polishing or abrasive flow processing. More
significant damage may require component replacement, with the modular
assembly design facilitating removal and replacement of individual elements
without complete propulsion system disassembly.

The variable geometry embodiment of the present invention incorporates sliding
sleeve mechanisms that enable in-flight adjustment of the effective corrugation
extent, optimizing nozzle characteristics for the varying conditions encountered
during atmospheric transit. This section provides detailed description of the
variable geometry mechanisms, actuation systems, and operational procedures.

The sliding sleeve assembly comprises eight sleeve segments, one positioned at
each lobe trough location. Each sleeve segment spans approximately thirty
degrees of azimuthal arc, covering the trough region between adjacent lobe
peaks. The sleeve segments are independently movable in the axial direction,

sliding along guide rails that extend parallel to the nozzle axis at the trough
locations.

Each sleeve segment has length of two hundred fifty millimeters when fully
extended, sufficient to cover the complete corrugated section from the
corrugation initiation station to the exit plane. The sleeve segments are fabricated
from Inconel 718 sheet material of two millimeters thickness, formed to match
the trough contour of the corrugated section when in the retracted position. When
extended, the sleeves present a smooth inner surface that covers the trough
corrugation while leaving the peak regions exposed.

The guide rail system comprises pairs of rails positioned at each lobe sidewall,
providing four rails per sleeve segment for stable guidance and prevention of
circumferential rotation. The rails are fabricated from stellite cobalt alloy,
providing the wear resistance necessary for repeated sleeve translation while
maintaining low friction coefficient against the Inconel sleeve material. The rail
profile includes labyrinth seals that minimize hot gas intrusion into the guide
mechanism during operation.

The actuation system employs pneumatic cylinders operating on high-pressure
helium supplied from the vehicle pneumatic system. Each sleeve segment is
driven by two actuator cylinders positioned at the upstream and downstream ends
of the sleeve travel range. The dual-cylinder arrangement provides redundancy
against single actuator failure and enables differential force application for sleeve
alignment during translation.

The pneumatic cylinders have bore diameter of twenty millimeters and stroke of
two hundred sixty millimeters, providing translation range exceeding the sleeve
length. The maximum operating pressure of two hundred bar generates actuator
force of approximately six thousand three hundred newtons per cylinder,
substantially exceeding the forces required for sleeve translation under operating
conditions.

Position sensing employs linear variable differential transformers mounted
parallel to each actuator cylinder. The transformer core is attached to the sleeve
segment and moves within the transformer coils as the sleeve translates. The
transformer output provides absolute position measurement with resolution of
zero point one millimeters and accuracy of zero point five millimeters across the
full travel range.

The control system receives commands from the vehicle flight computer
specifying the desired sleeve position as a function of flight condition. The
controller compares the commanded position with the measured position from
each sleeve segment and generates the appropriate valve commands to apply
pneumatic pressure for sleeve translation. Proportional control enables
continuous positioning at any point within the travel range, not merely at the
fully extended or fully retracted extremes.

The thermal environment at the sleeve location challenges the mechanism design
through the combination of high temperature and temperature variation during
operation. When retracted, the sleeves are exposed to the full combustion gas
temperature and convective heating. When extended, the sleeves receive reduced
heating from the cooler flow in the trough regions while the unexposed peak
regions continue to experience full heating.

Sleeve cooling is provided through conductive heat transfer to the guide rails,
which are cooled by dedicated cooling passages integrated into the rail structure.
The cooling passages connect to the main regenerative cooling circuit through
small-diameter tubing that permits the relative motion between the fixed rails and
the translating sleeves. The thermal time constant of the sleeve material limits the
temperature excursions during transient operation, with the sleeve bulk
temperature remaining within the material capability for all anticipated
operational scenarios.

The sealing between sleeve segments and the adjacent structure prevents hot gas
intrusion into the mechanism cavities while accommodating the relative motion
of the translating sleeves. Ceramic fiber rope seals positioned at the sleeve
leading and trailing edges compress against stationary seal surfaces as the sleeves
translate, providing compliant sealing with minimal friction. The seals are
replaceable elements designed for periodic replacement during vehicle
refurbishment.

Operational procedures for the variable geometry system include pre-flight
checkout of sleeve translation and position sensing, in-flight adjustment
according to the programmed schedule, and post-flight verification of mechanism
condition. The pre-flight checkout exercises each sleeve segment through the full
travel range while verifying proper position feedback, appropriate actuation
forces, and absence of binding or irregular motion.

The in-flight adjustment schedule specifies sleeve position as a function of
altitude, with the sleeves typically in the fully retracted position at launch
(exposing complete corrugation for maximum sea-level mixing benefit),
progressively extending during atmospheric ascent as ambient pressure
decreases, and reaching fully extended position (covering corrugation for
vacuum-optimized smooth geometry) before stage separation or orbit insertion.

The transition rate is controlled to prevent rapid changes in nozzle characteristics
that could create thrust transients affecting vehicle guidance. Typical translation
rates of two millimeters per second result in complete transition from retracted to
extended position over approximately two minutes, corresponding to the altitude

New York General Group 8

Multi-Stage Propulsion System with Variable-Geometry Corrugate Lobe Exhaust Architecture for Enhanced Supersonic Thrust Vectoring and Mixing Efficiency

range from approximately fifteen to fifty kilometers where the transition provides
greatest benefit.

Alternative embodiments employ mechanical linkages that provide sleeve
translation as an automatic function of ambient pressure, eliminating the
pneumatic actuation and electronic control complexity. These pressure-
responsive mechanisms employ bellows or diaphragm elements exposed to
ambient conditions, with mechanical linkages that convert the pressure-
responsive motion to sleeve translation. The passive approach provides inherent
reliability benefits while sacrificing the flexibility of programmable position
control.

The corrugated lobe propulsion system of the present invention achieves
performance advantages across multiple metrics relative to conventional smooth-
wall nozzle designs. These advantages arise from the controlled manipulation of
shock wave structures, enhanced mixing through vortical mechanisms, and
improved adaptation to varying operating conditions.

The mixing enhancement provided by the streamwise vortical structures
accelerates the equilibration between exhaust gases and ambient air or secondary
propellant streams. For applications requiring rapid mixing such as air-
augmented rocket propulsion, the mixing length required to achieve ninety
percent thermal equilibration is reduced by approximately forty percent relative
to equivalent round nozzles operating under comparable conditions.

The shock wave coalescence behavior reduces the acoustic emission intensity in
the high-frequency bands where the small-scale shock oscillations would
otherwise radiate substantial noise energy. The measured overall sound pressure
level at reference distance shows reduction of approximately three decibels
relative to conventional nozzle designs, with the reduction concentrated in
frequency bands above two kilohertz where hearing damage risk is greatest.

The separation resistance afforded by the sixty-percent corrugation extent
enables reliable operation at nozzle pressure ratios as low as sixty percent of the
design value without the flow instabilities associated with separated nozzles. This
expanded operating range reduces altitude compensation requirements for launch
vehicle applications and increases operational flexibility for in-space propulsion
applications with variable thrust requirements.

The thermal management advantages of the three-dimensional cooling channel
geometry include reduced coolant pressure drop for equivalent cooling
effectiveness and reduced peak wall temperatures through exploitation of
secondary flow enhancement within curved channel passages. These advantages
translate to reduced turbopump power requirements or increased thermal margin,
either of which contributes to overall propulsion system improvement.

The structural efficiency of the corrugated geometry provides favorable ratio of
wall material mass to contained pressure volume relative to equivalent circular
cross-sections. The membrane stress reduction at lobe peaks permits local wall
thickness reduction that partially compensates for the thickness increases
required at lobe troughs, resulting in aggregate mass comparable to or below that
of equivalent axisymmetric designs.

The manufacturing advantages of the additive manufacturing approach include
the ability to produce the complete corrugated section with integrated cooling
channels as a single monolithic component, eliminating the joints, welds, and
assembly operations required for conventional multi-piece fabrication. This
integration reduces manufacturing time, eliminates potential leak paths at joints,
and ensures geometric consistency between internal cooling passages and
external flow surfaces.

The present invention encompasses variations and alternative embodiments that
adapt the fundamental corrugated lobe concept to different applications,
propellant combinations, and performance requirements while maintaining the
essential sixty-percent corrugation extent optimization.

Embodiments for hydrogen-oxygen propellant combinations accommodate the
substantially higher specific impulse and correspondingly higher exit velocity
and area ratio characteristic of these propellants. The throat diameter reduces for
equivalent thrust magnitude, and the divergent section length increases to achieve
the higher expansion ratios (typically twenty-five to forty for vacuum
applications). The corrugation initiation station and corrugation extent scale
proportionally with the increased divergent length, maintaining the sixty-percent
ratio that provides optimal performance.

Embodiments for solid rocket motor applications adapt the corrugated lobe
geometry for the ablative nozzle materials characteristic of these motors. The
corrugation is machined or formed into the graphite, carbon-carbon composite, or
silica phenolic ablative materials rather than into the metallic regeneratively-
cooled structures of liquid propellant systems. The corrugation parameters are
adjusted to account for the progressive surface erosion occurring during motor
operation, ensuring that the corrugation remains effective as the surface contour
evolves.

Embodiments for hybrid rocket motors combine features of liquid and solid
motor approaches, with the oxidizer-wetted injector end employing metallic
construction and the fuel-wetted chamber and nozzle regions employing ablative
materials. The corrugated lobe geometry is implemented in the metallic nozzle
extension where applicable, or in the ablative throat and divergent section
following the solid motor approach.

Embodiments for electric propulsion systems adapt the corrugated lobe concept
for the substantially different operating conditions of ion, Hall effect, or
magnetoplasmadynamic thrusters. The corrugation functions to enhance mixing
between the accelerated propellant stream and any neutral gas from imperfect
ionization, improving thrust recovery from incompletely ionized propellant. The
electromagnetic acceleration mechanisms of electric thrusters create
fundamentally different shock and expansion patterns than chemical propulsion,
and the corrugation parameters are correspondingly modified.

Embodiments for airbreathing propulsion, including ramjet and scramjet systems,
employ the corrugated lobe geometry at the exhaust nozzle to enhance mixing
between the combustion products and the bypass air stream. The different
operating Mach number range and temperature conditions of airbreathing
systems influence the corrugation parameter selection while maintaining the
sixty-percent extent optimization.

Embodiments incorporating film cooling rather than regenerative cooling adapt
the wall construction for the different cooling mechanism. The corrugated wall is
fabricated from high-temperature alloy without integral cooling channels, with
film coolant injection occurring through discrete ports positioned upstream of the
corrugation initiation station. The injected coolant film distributes around the
corrugated geometry, with the three-dimensional flow patterns influencing film
coverage and effectiveness in ways that are accommodated through optimized
injection port placement.

Embodiments incorporating transpiration cooling employ porous wall
construction that permits uniform coolant emergence across the wall surface. The
corrugated geometry is fabricated from sintered powder metal or laser-drilled
metallic materials that provide the required porosity while maintaining structural
capability. The local porosity varies circumferentially and axially to match the
local cooling requirement distribution, with increased porosity at lobe peaks and
shock impingement locations.

Embodiments incorporating radiation cooling eliminate active cooling entirely,
relying on thermal radiation from the hot wall surface to space environment to
maintain acceptable temperatures. These embodiments are applicable only for
vacuum operation where the low ambient pressure eliminates convective losses
and radiation becomes the dominant heat rejection mechanism. The corrugated
wall is fabricated from refractory metals or ceramic materials capable of
sustained operation at temperatures of fifteen hundred to two thousand Kelvin,
with surface treatments or coatings optimized for high emissivity to maximize
radiative heat rejection.

The foregoing detailed description presents the corrugated lobe propulsion
system of the present invention in sufficient detail to enable practice by those
skilled in the relevant engineering arts. The specific parameters, materials, and
processes described represent preferred embodiments suitable for particular
applications, while the broader inventive concepts encompass variations adapted
to the diverse requirements of aerospace propulsion across the full range of
vehicle types, mission profiles, and operating environments.

Abstract

A rocket propulsion system incorporating a divergent exhaust section with
corrugated lobe geometry extending through approximately sixty percent of the
divergent section length, measured from a nozzle exit plane and initiating at a
predetermined station downstream of a throat plane. The corrugated lobe portion
generates double-diamond shock patterns that progressively coalesce into single-
diamond configurations in the downstream exhaust plume, while streamwise
vortical structures develop from pressure gradients established by the lobe
geometry to enhance mixing efficiency. The sixty-percent corrugation extent
represents an optimal balance between mixing enhancement, shock management,
internal dissipation losses, and boundary layer separation resistance. The system
incorporates thermal management provisions addressing concentrated heating at
lobe peaks, structural design accommodating three-dimensional stress
distributions, and optional variable geometry mechanisms enabling adjustment of
effective corrugation extent during flight. Multi-stage configurations employ
differing corrugation extents optimized for atmospheric and vacuum operating
regimes.

Prior Art Reference

Investigation on the Impact of Divergent Corrugated Lobe Length on Supersonic
Flow
K. G. Kriparaj, P. S. Tide, and N. Biju
Journal of Spacecraft and Rockets 2025 62:6, 1882-1890

Appendix 1

The following equations establish the mathematical foundation governing the
corrugated lobe propulsion system, defining the relationships between geometric
parameters, flow field characteristics, and performance metrics that underpin the
sixty-percent corrugation extent optimization.

Corrugated Wall Geometry Definition

The local wall radius at any point within the corrugated section equals the sum of
the mean radius component and the circumferentially-varying perturbation
component. The variable r represents the radial distance from the nozzle

r (z , θ) = rm(z) + A (z)cos(N θ)

New York General Group 9

https://arc.aiaa.org/doi/abs/10.2514/1.A36286
https://arc.aiaa.org/doi/abs/10.2514/1.A36286

Multi-Stage Propulsion System with Variable-Geometry Corrugate Lobe Exhaust Architecture for Enhanced Supersonic Thrust Vectoring and Mixing Efficiency

centerline to the wall surface measured in meters. The axial coordinate z denotes
the downstream distance from the throat plane measured in meters. The
azimuthal coordinate θ represents the angular position around the nozzle
circumference measured in radians from a reference meridian. The mean radius
function rₘ specifies the axisymmetric baseline expansion contour that would
exist in the absence of corrugation. The amplitude function A defines the
magnitude of the radial perturbation at each axial station. The integer N
designates the number of lobes around the circumference, equal to eight for the
representative implementation.

Amplitude Distribution Function

The amplitude of the corrugation varies from zero at the corrugation initiation
station to maximum value at the exit plane according to a modified cosine
distribution. The variable Aₑₓᵢₜ represents the maximum amplitude achieved at the
exit plane, equal to eighteen millimeters for the representative implementation.
The axial position zᵢ denotes the corrugation initiation station location where
amplitude equals zero. The exit plane position zₑ marks the downstream terminus
of the corrugated section. The exponent β controls the rate of amplitude growth
through the corrugated section, with values greater than unity biasing the
amplitude increase toward the downstream portion of the corrugation region.

Corrugation Extent Ratio

The corrugation extent ratio quantifies the fraction of the divergent section length
occupied by the corrugated geometry. The parameter ξ equals the corrugation
length Lc divided by the total divergent section length Ld. The corrugation length
equals the difference between the exit plane position zₑ and the corrugation
initiation position zᵢ. The total divergent length equals the difference between the
exit plane position zₑ and the throat position zₜ. For the present invention, the
optimal value of the corrugation extent ratio equals zero point six, corresponding
to sixty percent of the divergent section length.

Oblique Shock Wave Angle Relation

The relationship between the shock wave angle and the flow deflection angle for
oblique shock waves generated at lobe peaks follows from the conservation
equations across the shock discontinuity. The deflection angle δ represents the
angular change in flow direction caused by the lobe geometry. The shock angle σ
denotes the inclination of the shock wave relative to the incoming flow direction.
The upstream Mach number M₁ characterizes the supersonic flow velocity
approaching the shock wave. The specific heat ratio γ equals the ratio of specific
heats at constant pressure and constant volume for the combustion gas mixture,
approximately one point two four for typical rocket propellants.

Pressure Ratio Across Oblique Shock

The static pressure increase across an oblique shock wave depends upon the
upstream Mach number and the shock angle. The downstream pressure p₂
exceeds the upstream pressure p₁ by an amount determined by the normal
component of the Mach number relative to the shock surface. Stronger shock
waves at greater angles create larger pressure ratios, with the limiting case of a
normal shock occurring when the shock angle equals ninety degrees.

Prandtl-Meyer Expansion Function

The Prandtl-Meyer function relates the Mach number to the turning angle
through an isentropic expansion wave such as occurs at lobe trough locations.
The function ν evaluated at Mach number M gives the total turning angle that the
flow has undergone in expanding from sonic conditions to the specified Mach
number. The difference in Prandtl-Meyer function values between two stations
gives the flow turning angle through an expansion fan connecting those stations.

Circumferential Pressure Gradient

The circumferential pressure gradient that drives secondary flow and vortex
generation depends upon the local flow density, velocity, and circumferential
curvature of the streamlines. The density ρ represents the local mass per unit
volume of the combustion gas. The velocity u denotes the local flow speed
tangent to the streamline. The circumferential curvature κθ quantifies the rate of
streamline turning in the circumferential direction induced by the corrugated wall
geometry.

Streamwise Vorticity Generation

The evolution of streamwise vorticity within the corrugated section follows from
the vorticity transport equation applied to compressible viscous flow. The
streamwise vorticity component ωz represents the rotation of fluid elements
about axes parallel to the nozzle axis. The material derivative D/Dt describes the
rate of change following a fluid element. The baroclinic torque term involving
the cross product of density and pressure gradients generates vorticity when these
gradients are not parallel, as occurs in the three-dimensional shock-expansion
pattern of the corrugated section. The kinematic viscosity ν multiplying the
Laplacian of vorticity represents the diffusive spreading of vorticity through
viscous action.

Circulation of Individual Vortices

The circulation quantifies the strength of vortical structures through the line
integral of velocity around a closed contour or equivalently the surface integral
of vorticity over the enclosed area. The velocity vector u represents the local flow
velocity at each point along the integration contour C. The differential path
element dl follows the contour in the positive sense. The surface S spans the
contour with normal direction aligned with the streamwise axis. The circulation
of individual lobe-generated vortices reaches approximately twelve square
meters per second at the exit plane for the representative implementation.

Mixing Enhancement Parameter

The mixing enhancement provided by the vortical structures is characterized by
the mixed mass fraction as a function of downstream distance from the nozzle
exit. The mixed mass flow rate ṁₘᵢₓₑd represents the portion of the total flow that
has achieved thermal and compositional equilibration with the ambient or
secondary fluid. The total mass flow rate ṁₜₒₜₐₗ equals the sum of exhaust and
entrained flows. The downstream distance x is measured from the exit plane. The
mixing length Lₘ characterizes the axial distance required to achieve substantial
mixing, with smaller values indicating more rapid mixing. The corrugated lobe
geometry reduces the mixing length by approximately forty percent relative to
equivalent circular nozzles.

Shock Coalescence Distance

The distance downstream of the exit plane at which the multiple shock waves
from individual lobe peaks coalesce into a single unified shock structure depends
upon the exit diameter, the nozzle pressure ratio, and a geometric coefficient. The
coalescence distance xc is measured in the downstream direction from the exit
plane. The coalescence coefficient Cc depends upon the number of lobes and the
lobe amplitude ratio, with typical values between two and four for the eight-lobe
configuration. The exit diameter Dₑ characterizes the nozzle exit dimension. The
exit pressure pₑ and ambient pressure pₐ determine the nozzle pressure ratio that
influences shock strength and interaction behavior.

Boundary Layer Momentum Thickness

The momentum thickness characterizes the momentum deficit within the
boundary layer relative to the freestream conditions, serving as the primary
parameter for assessing boundary layer health and separation resistance. The
integration proceeds from the wall surface at y equals zero through the boundary
layer to the edge at y equals δ. The local density ρ and velocity u vary through
the boundary layer according to the compressible boundary layer profiles. The
edge density ρₑ and edge velocity uₑ represent the freestream conditions
immediately outside the boundary layer. Larger momentum thickness values
indicate thicker, more energy-deficient boundary layers with reduced separation
resistance.

Shape Factor and Separation Criterion

A (z) = Aexit

1 − cos (π
z − zi

ze − zi)
2

β

ξ =
Lc
Ld

=
ze − zi
ze − zt

tan δ = 2 cot σ
M2

1 sin2 σ − 1

M 2
1 (γ + cos 2σ) + 2

p2
p1

= 1 +
2γ

γ + 1
(M2

1 sin2 σ − 1)

ν (M) =
γ + 1
γ − 1

arctan
γ − 1
γ + 1

(M2 − 1) − arctan M2 − 1

∂p
∂θ

= − ρ u2κθ

D ωz
D t

=
1

ρ2 (∇ρ × ∇p)z + ν ∇2 ωz

Γ = ∮C
⃗u ⋅ d ⃗l = ∬S

ωz d S

ηm =
·mmixed
·mtotal

= 1 − exp (−
x

Lm)

xc = Cc ⋅ De ⋅ (pe
pa)

0.4

θ = ∫
δ

0

ρ u
ρeue (1 −

u
ue) d y

New York General Group 10

Multi-Stage Propulsion System with Variable-Geometry Corrugate Lobe Exhaust Architecture for Enhanced Supersonic Thrust Vectoring and Mixing Efficiency

The shape factor provides a sensitive indicator of boundary layer condition and
separation susceptibility through the ratio of displacement thickness to
momentum thickness. The displacement thickness δ* represents the distance by
which the external flow is displaced outward due to the velocity deficit within the
boundary layer. The momentum thickness θ quantifies the momentum deficit as
defined previously. The critical shape factor Hₛₑₚ represents the threshold value
above which separation becomes imminent, approximately three point zero for
turbulent boundary layers under the conditions prevailing in rocket nozzles.
Maintaining the shape factor below this critical value throughout the corrugated
section ensures attached flow and full performance realization.

Wall Heat Transfer

The heat flux at the wall surface equals the convective heat transfer from the hot
gas to the wall and must equal the conductive heat transfer through the wall to
the coolant under steady-state conditions. The wall heat flux qw represents the
thermal energy per unit area per unit time crossing the wall surface. The
convective heat transfer coefficient h characterizes the effectiveness of heat
transfer from the gas to the wall. The adiabatic wall temperature Tₐw represents
the equilibrium temperature an insulated wall would achieve. The actual wall
temperature Tw results from the balance between heating and cooling. The wall
thermal conductivity kw and wall thickness tw govern the conductive resistance.
The coolant temperature Tc represents the heat sink condition.

Adiabatic Wall Temperature

The adiabatic wall temperature exceeds the static temperature due to recovery of
kinetic energy within the boundary layer. The edge static temperature Tₑ
represents the temperature of the freestream flow outside the boundary layer. The
recovery factor r characterizes the fraction of kinetic energy recovered at the
wall, approximately zero point nine for turbulent boundary layers. The specific
heat ratio γ and edge Mach number Mₑ complete the determination of the
temperature recovery.

Coolant Heat Transfer Coefficient

The convective heat transfer coefficient on the coolant side of the wall
determines the cooling effectiveness for given coolant conditions and channel
geometry. The Nusselt number Nu represents the dimensionless heat transfer
coefficient. The coolant thermal conductivity kc characterizes the coolant
material thermal transport property. The hydraulic diameter Dₕ equals four times
the channel cross-sectional area divided by the wetted perimeter. The Reynolds
number Re characterizes the coolant flow velocity and viscosity conditions. The
Prandtl number Pr represents the ratio of momentum diffusivity to thermal
diffusivity for the coolant. The coefficient zero point zero two three and the
exponents zero point eight and zero point four derive from the Dittus-Boelter
correlation for turbulent pipe flow.

Structural Hoop Stress

The hoop stress in the nozzle wall resists the tendency of internal pressure to
expand the structure radially. The circumferential stress σθ acts tangentially
around the nozzle circumference. The internal pressure p represents the local
combustion gas pressure at the station of interest. The local radius r characterizes
the distance from the nozzle axis to the wall. The local radius of curvature ρc in
the circumferential direction modifies the stress distribution for non-circular
cross-sections, with stress increasing where curvature is tight and decreasing
where curvature is gentle. The wall thickness t provides the structural resistance
to the pressure loading.

Thermal Stress Through Wall Thickness

The thermal stress arising from temperature gradients through the wall thickness
creates bending moments that add to the membrane stress from pressure loading.
The elastic modulus E characterizes the material stiffness. The coefficient of
thermal expansion α represents the fractional dimensional change per unit
temperature change. The temperature difference ΔT equals the difference
between hot-side and cold-side wall temperatures. The Poisson ratio ν accounts
for the biaxial constraint in the thin shell geometry. The factor of two in the
denominator reflects the linear temperature distribution assumption.

Thrust Coefficient

The thrust coefficient characterizes the nozzle effectiveness in converting
chamber pressure into thrust, providing the primary performance metric for
comparing nozzle designs. The first term under the radical represents the
momentum thrust contribution arising from acceleration of the exhaust gases.
The second term represents the pressure thrust contribution arising from the
difference between exit pressure and ambient pressure acting over the exit area.
The chamber pressure pc serves as the reference pressure. The exit pressure pₑ
and ambient pressure pₐ determine the pressure thrust contribution. The exit area
Aₑ and throat area Aₜ define the nozzle area ratio. The specific heat ratio γ
governs the isentropic expansion relationships.

Specific Impulse

The specific impulse represents the fundamental measure of propellant utilization
efficiency, expressing the thrust produced per unit weight flow rate of propellant
consumed. The thrust F equals the product of thrust coefficient, chamber
pressure, and throat area. The mass flow rate ṁ represents the propellant
consumption rate. The standard gravitational acceleration g₀ equals nine point
eight zero six five meters per second squared, providing the conversion between
mass and weight flow rates. Higher specific impulse indicates more efficient
utilization of propellant mass.

Nozzle Efficiency

The nozzle efficiency quantifies the performance achieved relative to the ideal
isentropic expansion, accounting for all loss mechanisms present in the actual
flow. The actual thrust coefficient CF,actual reflects the integrated effect of all
flow phenomena. The ideal thrust coefficient CF,ideal represents the performance
achievable with perfect isentropic expansion to the actual exit pressure. The
divergence loss ηdiv accounts for the non-axial direction of flow at the exit
plane. The boundary layer loss ηbl represents the momentum deficit within the
viscous boundary layer. The shock loss ηshock accounts for the entropy increase
through internal shock waves. For the corrugated lobe configuration, the shock
loss is managed through the coalescence behavior such that overall efficiency
remains within approximately one percent of equivalent conventional nozzle
designs while providing the substantial mixing and acoustic benefits.

Vortex Core Tangential Velocity

The tangential velocity distribution within and around each streamwise vortex
follows the Lamb-Oseen vortex model that accounts for viscous diffusion of the
vortex core. The tangential velocity uθ at radial distance r from the vortex axis
depends upon the vortex circulation Γ and the core radius rc. At large distances
from the vortex axis, the velocity approaches the inviscid point vortex solution
proportional to the inverse of radius. Within the vortex core, the velocity
increases approximately linearly with radius, reaching maximum value at
approximately one point one two times the core radius. The core radius grows
with downstream distance due to viscous diffusion according to the relationship
rc equals the square root of four times kinematic viscosity times time.

Lobe Penetration Parameter

The lobe penetration parameter characterizes the geometric intensity of the
corrugation through the ratio of lobe amplitude to mean radius at the exit plane.
This dimensionless parameter determines the strength of the circumferential
pressure variations and the resulting vortex circulation. For the representative
implementation with amplitude of eighteen millimeters and mean exit radius of
one hundred sixty-two millimeters, the penetration parameter equals
approximately zero point one one. Values substantially below this range produce
insufficient vortex strength for effective mixing enhancement, while values
substantially above this range create excessive flow disturbance with associated
separation risk and efficiency penalty.

Reynolds Number at Corrugation Initiation

H =
δ*
θ

< Hsep

qw = h (Taw − Tw) =
kw
tw

(Tw − Tc)

Taw = Te [1 + r
γ − 1

2
M2e]

hc =
N u ⋅ kc

Dh
= 0.023 R e0.8P r0.4 kc

Dh

σθ =
p ⋅ r
ρc ⋅ t

σthermal =
E α ΔT

2(1 − ν)

CF =
2γ 2

γ − 1 (2
γ + 1)

γ + 1
γ − 1 1 − (pe

pc)
γ − 1

γ
+ (pe − pa

pc) Ae
At

Isp =
F

·m g0
=

CF ⋅ pc ⋅ At
·m g0

ηn =
CF,actual
CF,ideal

= 1 − ηdiv − ηbl − ηshock

uθ (r) =
Γ

2π r [1 − exp (−
r 2

r2c)]

λ =
Aexit

rm,exit

R ei =
ρiui Lc

μi

New York General Group 11

Multi-Stage Propulsion System with Variable-Geometry Corrugate Lobe Exhaust Architecture for Enhanced Supersonic Thrust Vectoring and Mixing Efficiency

The Reynolds number at the corrugation initiation station characterizes the ratio
of inertial to viscous forces that governs boundary layer behavior and turbulence
characteristics within the corrugated section. The density ρᵢ, velocity uᵢ, and
dynamic viscosity µᵢ are evaluated at local conditions at the corrugation initiation
station. The corrugation length Lc serves as the characteristic length scale. For
the representative implementation, this Reynolds number exceeds ten million,
ensuring fully turbulent boundary layer conditions throughout the corrugated
section and enabling the boundary layer to resist separation under the three-
dimensional pressure gradients imposed by the lobe geometry.

Pressure Recovery Coefficient

The pressure recovery coefficient quantifies the local pressure change relative to
the dynamic pressure at the corrugation initiation station, providing a normalized
measure of the pressure loading experienced by the boundary layer. The local
static pressure p at any point within the corrugated section is compared to the
reference pressure pᵢ at the corrugation initiation station. Positive values of the
pressure coefficient indicate pressure rise relative to the initiation station, which
would represent adverse pressure gradient for the boundary layer. The supersonic
expansion through the corrugated section produces predominantly negative
pressure coefficient values, representing the favorable pressure gradient that
maintains boundary layer attachment despite the three-dimensional geometric
perturbations.

Effective Area Ratio

The effective area ratio accounts for the boundary layer displacement effect that
reduces the cross-sectional area available for the inviscid core flow. The
geometric area ratio εgeo equals the physical exit area Aₑ divided by the throat
area Aₜ. The displacement thickness δ* at the exit plane reduces the effective
flow area by an annular region of thickness δ* around the circumference. For exit
diameter Dₑ, this correction reduces the effective area ratio by the factor in
parentheses. Accurate prediction of nozzle performance requires use of the
effective area ratio rather than the geometric area ratio in the thrust coefficient
and specific impulse calculations.

Acoustic Power Spectral Density

The acoustic power spectral density characterizes the distribution of noise energy
across frequency, enabling quantification of the acoustic benefits provided by the
corrugated lobe geometry. The spectral density Sₚₚ at frequency f depends upon
the ambient density ρ∞ and speed of sound c∞, the observation distance r, and
the volume integral of the Lighthill stress tensor Fourier transform magnitude
squared. The corrugated lobe geometry modifies the stress tensor distribution
through the altered shock structure and vortical mixing patterns, reducing the
high-frequency content associated with small-scale shock oscillations while
introducing low-frequency content associated with the organized vortex
structures.

Overall Sound Pressure Level

The overall sound pressure level integrates the power spectral density across all
frequencies to provide a single measure of total acoustic emission intensity. The
reference pressure pᵣₑf equals twenty micropascals, the standard reference for
sound pressure level measurements in air. The logarithmic scale expresses the
result in decibels. The corrugated lobe geometry achieves overall sound pressure
level reduction of approximately three decibels relative to equivalent
conventional nozzles, corresponding to halving of the acoustic power emission
and significant reduction in noise impact on surrounding structures and
personnel.

Thermal Effectiveness

The thermal effectiveness characterizes the cooling system performance through
the ratio of achieved temperature rise to maximum possible temperature rise. The
maximum wall temperature Tw,max represents the hottest point on the wall
surface, typically occurring at lobe peak locations where convective heating is
most intense. The coolant inlet temperature Tc,in represents the heat sink
condition. The adiabatic wall temperature Tₐw represents the theoretical
maximum wall temperature in the absence of cooling. Lower values of thermal
effectiveness indicate more effective cooling with greater margin between actual

wall temperature and the adiabatic limit. For the representative implementation,
thermal effectiveness equals approximately zero point four five at the most
critical lobe peak location, providing adequate margin for reliable operation.

Coolant Pressure Drop

The pressure drop through the cooling circuit comprises frictional losses along
the channel length and minor losses at the entrance and exit manifolds. The
friction factor f depends upon the channel Reynolds number and surface
roughness. The channel length Lc and hydraulic diameter Dₕ determine the
friction loss magnitude. The entrance and exit loss coefficients Kₑₙₜ and Kₑₓᵢₜ
characterize the minor losses at the manifold interfaces. The coolant density ρc
and velocity uc establish the dynamic pressure that scales all loss terms. For the
representative implementation, total cooling circuit pressure drop equals
approximately four point three bar, requiring corresponding margin in the
propellant feed system pressure capability.

Fatigue Life Estimation

The fatigue life in cycles to failure depends upon the alternating stress amplitude
and the material fatigue properties. The alternating stress σₐ equals one-half the
stress range from minimum to maximum during each loading cycle. The
coefficient A and exponent b are material constants determined from fatigue
testing, with typical values for Inconel 718 at operating temperature of A equals
one thousand two hundred megapascals and b equals zero point one two. For the
representative implementation with alternating stress of sixty-five megapascals,
the predicted fatigue life exceeds ten thousand cycles, substantially exceeding the
one hundred cycle requirement with appropriate safety factor.

Manufacturing Tolerance Stack-Up

The total dimensional variation resulting from multiple independent tolerance
contributions follows the root-sum-square combination rule for statistically
independent variations. Each individual tolerance contribution Δᵢ represents a
single source of dimensional uncertainty such as additive manufacturing build
accuracy, thermal distortion, machining tolerance, or assembly alignment. The
total variation Δₜₒₜₐₗ characterizes the expected range of the resulting dimension.
For the representative implementation, the critical throat diameter tolerance of
plus or minus zero point one millimeters results from combination of build
tolerance of zero point zero seven five millimeters, thermal distortion tolerance
of zero point zero five millimeters, and measurement uncertainty of zero point
zero three millimeters.

Appendix 2

```python 
""" 
Corrugated Lobe Propulsion System - Complete Implementation 
A comprehensive computational framework for design, analysis, and optimization 
of corrugated lobe rocket nozzle geometries with integrated thermal, structural, 
and performance prediction capabilities. 
""" 

import numpy as np 
from numpy import pi, sin, cos, tan, arctan, sqrt, exp, log, log10 
from numpy.linalg import norm, solve, inv 
from scipy.integrate import odeint, quad, dblquad, solve_ivp 
from scipy.optimize import fsolve, minimize, brentq, newton 
from scipy.interpolate import interp1d, RectBivariateSpline, CubicSpline 
from scipy.special import gamma as gamma_func 
from scipy.sparse import csr_matrix, lil_matrix 
from scipy.sparse.linalg import spsolve 
import matplotlib.pyplot as plt 
from mpl_toolkits.mplot3d import Axes3D 
from dataclasses import dataclass, field 
from typing import List, Tuple, Optional, Callable, Dict, Any 
from enum import Enum 
import json 
import warnings 
from abc import ABC, abstractmethod 
from functools import lru_cache 
import multiprocessing as mp 
from concurrent.futures import ProcessPoolExecutor, ThreadPoolExecutor 

# ============================================================================= 
# Physical Constants and Unit Conversions 
# ============================================================================= 

class PhysicalConstants: 
    """Fundamental physical constants and unit conversion factors.""" 
     
    UNIVERSAL_GAS_CONSTANT = 8314.46261815324  # J/(kmol·K) 
    STANDARD_GRAVITY = 9.80665  # m/s² 
    STEFAN_BOLTZMANN = 5.670374419e-8  # W/(m²·K⁴) 
    BOLTZMANN_CONSTANT = 1.380649e-23  # J/K 
    AVOGADRO_NUMBER = 6.02214076e23  # 1/mol 
    REFERENCE_PRESSURE_ACOUSTIC = 20e-6  # Pa (reference for SPL) 
     
    @staticmethod 
    def bar_to_pascal(bar: float) -> float: 
        return bar * 1e5 
     
    @staticmethod 
    def pascal_to_bar(pascal: float) -> float: 
        return pascal / 1e5 
     
    @staticmethod 
    def celsius_to_kelvin(celsius: float) -> float: 
        return celsius + 273.15 
     
    @staticmethod 
    def kelvin_to_celsius(kelvin: float) -> float: 
        return kelvin - 273.15 

# ============================================================================= 
# Material Property Database 
# ============================================================================= 

@dataclass 
class MaterialProperties: 

Cp =
p − pi
1
2 ρiu2

i

ϵef f =
Ae − Abl

At
= ϵgeo (1 −

2δ*
De )

Spp( f ) =
ρ2∞c4∞

r2 ∫V
̂Tij( f )

2
d V

O A S PL = 10 log10
∫ ∞
0 Spp( f )d f

p2
ref

εth =
Tw,ma x − Tc,in

Taw − Tc,in

Δpc = f
Lc
Dh

ρcu2c
2

+ Kent
ρcu2c

2
+ Kexit

ρcu2c
2

Nf = ( σa
A )

− 1
b

Δtotal =
n

∑
i=1

Δ2
i

New York General Group 12



Multi-Stage Propulsion System with Variable-Geometry Corrugate Lobe Exhaust Architecture for Enhanced Supersonic Thrust Vectoring and Mixing Efficiency 

    """Complete material property specification for structural analysis.""" 
     
    name: str 
    density: float  # kg/m³ 
    elastic_modulus: float  # Pa 
    poisson_ratio: float 
    yield_strength: float  # Pa 
    ultimate_strength: float  # Pa 
    thermal_conductivity: float  # W/(m·K) 
    specific_heat: float  # J/(kg·K) 
    thermal_expansion: float  # 1/K 
    melting_point: float  # K 
    max_service_temperature: float  # K 
    fatigue_coefficient: float  # Pa 
    fatigue_exponent: float 
     
    def get_elastic_modulus_at_temperature(self, temperature: float) -> float: 
        """Temperature-dependent elastic modulus with polynomial correction.""" 
        ratio = temperature / self.max_service_temperature 
        correction = 1.0 - 0.3 * ratio - 0.15 * ratio**2 
        return self.elastic_modulus * max(correction, 0.4) 
     
    def get_yield_strength_at_temperature(self, temperature: float) -> float: 
        """Temperature-dependent yield strength.""" 
        ratio = temperature / self.max_service_temperature 
        correction = 1.0 - 0.4 * ratio - 0.2 * ratio**2 
        return self.yield_strength * max(correction, 0.3) 
     
    def get_thermal_conductivity_at_temperature(self, temperature: float) -> float: 
        """Temperature-dependent thermal conductivity.""" 
        ratio = temperature / 1000.0 
        return self.thermal_conductivity * (1.0 + 0.15 * ratio) 

class MaterialDatabase: 
    """Database of common aerospace materials with complete property sets.""" 
     
    INCONEL_718 = MaterialProperties( 
        name="Inconel 718", 
        density=8190.0, 
        elastic_modulus=200e9, 
        poisson_ratio=0.29, 
        yield_strength=1034e6, 
        ultimate_strength=1241e6, 
        thermal_conductivity=11.4, 
        specific_heat=435.0, 
        thermal_expansion=13.0e-6, 
        melting_point=1609.0, 
        max_service_temperature=973.0, 
        fatigue_coefficient=1200e6, 
        fatigue_exponent=0.12 
    ) 
     
    COPPER_ALLOY_CUCRZR = MaterialProperties( 
        name="CuCrZr", 
        density=8900.0, 
        elastic_modulus=130e9, 
        poisson_ratio=0.34, 
        yield_strength=450e6, 
        ultimate_strength=520e6, 
        thermal_conductivity=320.0, 
        specific_heat=385.0, 
        thermal_expansion=17.0e-6, 
        melting_point=1356.0, 
        max_service_temperature=723.0, 
        fatigue_coefficient=800e6, 
        fatigue_exponent=0.10 
    ) 
     
    NIOBIUM_C103 = MaterialProperties( 
        name="Niobium C103", 
        density=8860.0, 
        elastic_modulus=100e9, 
        poisson_ratio=0.38, 
        yield_strength=275e6, 
        ultimate_strength=390e6, 
        thermal_conductivity=43.0, 
        specific_heat=272.0, 
        thermal_expansion=7.2e-6, 
        melting_point=2741.0, 
        max_service_temperature=1473.0, 
        fatigue_coefficient=600e6, 
        fatigue_exponent=0.14 
    ) 
     
    RHENIUM = MaterialProperties( 
        name="Rhenium", 
        density=21020.0, 
        elastic_modulus=463e9, 
        poisson_ratio=0.30, 
        yield_strength=290e6, 
        ultimate_strength=1070e6, 
        thermal_conductivity=48.0, 
        specific_heat=137.0, 
        thermal_expansion=6.2e-6, 
        melting_point=3459.0, 
        max_service_temperature=2273.0, 
        fatigue_coefficient=900e6, 
        fatigue_exponent=0.11 
    ) 

# ============================================================================= 
# Propellant Combustion Properties 
# ============================================================================= 

@dataclass 
class PropellantCombination: 
    """Complete propellant combustion property specification.""" 
     
    name: str 
    oxidizer: str 
    fuel: str 
    mixture_ratio: float  # O/F mass ratio 
    molecular_weight: float  # kg/kmol 
    specific_heat_ratio: float 
    characteristic_velocity: float  # m/s 
    combustion_temperature: float  # K 
    specific_heat_constant_pressure: float  # J/(kg·K) 
    viscosity_reference: float  # Pa·s at reference temperature 
    viscosity_temperature_exponent: float 
    thermal_conductivity_gas: float  # W/(m·K) 
    prandtl_number: float 
     
    def get_gas_constant(self) -> float: 
        """Specific gas constant for the combustion products.""" 
        return PhysicalConstants.UNIVERSAL_GAS_CONSTANT / self.molecular_weight 
     
    def get_viscosity(self, temperature: float) -> float: 
        """Temperature-dependent dynamic viscosity using power law.""" 
        T_ref = 3000.0 
        return self.viscosity_reference * (temperature / T_ref) ** self.viscosity_temperature_exponent 
     
    def get_thermal_conductivity(self, temperature: float) -> float: 
        """Temperature-dependent thermal conductivity.""" 
        T_ref = 3000.0 
        return self.thermal_conductivity_gas * (temperature / T_ref) ** 0.7 
     
    def get_density(self, pressure: float, temperature: float) -> float: 
        """Ideal gas density calculation.""" 
        R = self.get_gas_constant() 
        return pressure / (R * temperature) 

class PropellantDatabase: 
    """Database of common propellant combinations.""" 
     
    LOX_RP1 = PropellantCombination( 
        name="LOX/RP-1", 
        oxidizer="Liquid Oxygen", 
        fuel="RP-1 Kerosene", 
        mixture_ratio=2.56, 
        molecular_weight=23.3, 
        specific_heat_ratio=1.24, 
        characteristic_velocity=1774.0, 
        combustion_temperature=3670.0, 
        specific_heat_constant_pressure=2010.0, 
        viscosity_reference=9.5e-5, 
        viscosity_temperature_exponent=0.68, 
        thermal_conductivity_gas=0.18, 
        prandtl_number=0.82 
    ) 
     
    LOX_LH2 = PropellantCombination( 
        name="LOX/LH2", 
        oxidizer="Liquid Oxygen", 
        fuel="Liquid Hydrogen", 
        mixture_ratio=6.0, 
        molecular_weight=12.0, 
        specific_heat_ratio=1.26, 
        characteristic_velocity=2386.0, 
        combustion_temperature=3520.0, 
        specific_heat_constant_pressure=4120.0, 
        viscosity_reference=7.2e-5, 
        viscosity_temperature_exponent=0.72, 
        thermal_conductivity_gas=0.42, 
        prandtl_number=0.71 
    ) 
     
    NTO_MMH = PropellantCombination( 
        name="NTO/MMH", 
        oxidizer="Nitrogen Tetroxide", 
        fuel="Monomethylhydrazine", 

        mixture_ratio=1.65, 
        molecular_weight=21.8, 
        specific_heat_ratio=1.25, 
        characteristic_velocity=1720.0, 
        combustion_temperature=3250.0, 
        specific_heat_constant_pressure=1850.0, 
        viscosity_reference=8.8e-5, 
        viscosity_temperature_exponent=0.65, 
        thermal_conductivity_gas=0.15, 
        prandtl_number=0.85 
    ) 

# ============================================================================= 
# Corrugated Lobe Geometry Definition 
# ============================================================================= 

@dataclass 
class CorrugatedLobeParameters: 
    """Complete geometric specification for the corrugated lobe nozzle.""" 
     
    # Throat geometry 
    throat_radius: float  # m 
    throat_radius_of_curvature_upstream: float  # m 
    throat_radius_of_curvature_downstream: float  # m 
     
    # Divergent section geometry 
    divergent_half_angle_initial: float  # radians 
    divergent_half_angle_exit: float  # radians 
    area_ratio: float 
    divergent_length: float  # m 
     
    # Corrugation parameters 
    number_of_lobes: int 
    corrugation_extent_ratio: float  # fraction of divergent length 
    exit_amplitude: float  # m 
    amplitude_exponent: float 
    lobe_phase_angle: float  # radians 
     
    # Convergent section (optional) 
    convergent_half_angle: float = 0.5236  # radians (30 degrees default) 
    convergent_length: float = 0.0  # m, computed if zero 
    chamber_radius: float = 0.0  # m, computed if zero 
    contraction_ratio: float = 3.0 
     
    def __post_init__(self): 
        """Compute derived geometric parameters.""" 
        self.throat_area = pi * self.throat_radius**2 
        self.exit_radius = self.throat_radius * sqrt(self.area_ratio) 
        self.exit_area = pi * self.exit_radius**2 
         
        if self.chamber_radius == 0.0: 
            self.chamber_radius = self.throat_radius * sqrt(self.contraction_ratio) 
         
        if self.convergent_length == 0.0: 
            self.convergent_length = ( 
                (self.chamber_radius - self.throat_radius) /  
                tan(self.convergent_half_angle) 
            ) 
         
        # Corrugation initiation position 
        self.corrugation_start_position = ( 
            self.divergent_length * (1.0 - self.corrugation_extent_ratio) 
        ) 
         
        # Corrugation length 
        self.corrugation_length = ( 
            self.divergent_length * self.corrugation_extent_ratio 
        ) 
         
        # Lobe penetration parameter 
        self.penetration_parameter = self.exit_amplitude / self.exit_radius 

class NozzleContourGenerator: 
    """Generates the complete three-dimensional nozzle contour.""" 
     
    def __init__(self, params: CorrugatedLobeParameters): 
        self.params = params 
        self._build_axisymmetric_contour() 
     
    def _build_axisymmetric_contour(self): 
        """Construct the baseline axisymmetric contour before corrugation.""" 
        p = self.params 
         
        # Number of axial stations for contour definition 
        n_stations = 500 
         
        # Convergent section 
        z_conv = np.linspace(-p.convergent_length, 0, n_stations // 4) 
        r_conv = np.zeros_like(z_conv) 
         
        for i, z in enumerate(z_conv): 
            # Parabolic convergent contour 
            z_norm = (z + p.convergent_length) / p.convergent_length 
            r_conv[i] = p.chamber_radius - (p.chamber_radius - p.throat_radius) * z_norm**1.5 
         
        # Throat region with circular arc 
        theta_range = np.linspace(-pi/4, pi/4, n_stations // 4) 
        z_throat = p.throat_radius_of_curvature_downstream * np.sin(theta_range) 
        r_throat = ( 
            p.throat_radius +  
            p.throat_radius_of_curvature_downstream * (1 - np.cos(theta_range)) 
        ) 
         
        # Divergent section using Rao optimum contour approximation 
        z_div = np.linspace( 
            z_throat[-1] + 0.001,  
            p.divergent_length,  
            n_stations // 2 
        ) 
        r_div = np.zeros_like(z_div) 
         
        # Initial expansion angle 
        theta_init = p.divergent_half_angle_initial 
        # Exit angle 
        theta_exit = p.divergent_half_angle_exit 
         
        for i, z in enumerate(z_div): 
            z_norm = z / p.divergent_length 
            # Parabolic angle variation (Rao contour approximation) 
            local_angle = theta_init - (theta_init - theta_exit) * z_norm**0.8 
             
            if i == 0: 
                r_div[i] = r_throat[-1] + z_div[0] * tan(theta_init) 
            else: 
                dz = z_div[i] - z_div[i-1] 
                r_div[i] = r_div[i-1] + dz * tan(local_angle) 
         
        # Combine sections 
        self.z_contour = np.concatenate([z_conv, z_throat[1:], z_div]) 
        self.r_contour = np.concatenate([r_conv, r_throat[1:], r_div]) 
         
        # Create interpolation function 
        self.r_mean_interp = interp1d( 
            self.z_contour,  
            self.r_contour,  
            kind='cubic', 
            fill_value='extrapolate' 
        ) 
     
    def get_mean_radius(self, z: float) -> float: 
        """Get the axisymmetric mean radius at axial position z.""" 
        return float(self.r_mean_interp(z)) 
     
    def get_amplitude(self, z: float) -> float: 
        """Get the corrugation amplitude at axial position z.""" 
        p = self.params 
         
        if z < p.corrugation_start_position: 
            return 0.0 
         
        z_local = z - p.corrugation_start_position 
        z_norm = z_local / p.corrugation_length 
         
        # Modified cosine distribution with exponent 
        amplitude = p.exit_amplitude * ( 
            (1.0 - cos(pi * z_norm)) / 2.0 
        ) ** p.amplitude_exponent 
         
        return amplitude 
     
    def get_radius(self, z: float, theta: float) -> float: 
        """Get the wall radius at position (z, θ).""" 
        r_mean = self.get_mean_radius(z) 
        amplitude = self.get_amplitude(z) 
         
        N = self.params.number_of_lobes 
        phi = self.params.lobe_phase_angle 
         
        r = r_mean + amplitude * cos(N * theta + phi) 
         
        return r 
     
    def get_surface_point(self, z: float, theta: float) -> np.ndarray: 
        """Get Cartesian coordinates of a surface point.""" 
        r = self.get_radius(z, theta) 
        x = r * cos(theta) 
        y = r * sin(theta) 
        return np.array([x, y, z]) 
     
    def get_surface_normal(self, z: float, theta: float) -> np.ndarray: 
        """Compute the outward unit normal vector at a surface point.""" 

New York General Group 13



Multi-Stage Propulsion System with Variable-Geometry Corrugate Lobe Exhaust Architecture for Enhanced Supersonic Thrust Vectoring and Mixing Efficiency 

        # Numerical derivatives 
        dz = 1e-6 
        dtheta = 1e-6 
         
        p0 = self.get_surface_point(z, theta) 
        pz = self.get_surface_point(z + dz, theta) 
        pt = self.get_surface_point(z, theta + dtheta) 
         
        # Tangent vectors 
        t_z = (pz - p0) / dz 
        t_theta = (pt - p0) / dtheta 
         
        # Normal vector (outward) 
        n = np.cross(t_z, t_theta) 
        n = n / norm(n) 
         
        # Ensure outward direction 
        r_vec = np.array([p0[0], p0[1], 0]) 
        if np.dot(n[:2], r_vec[:2]) < 0: 
            n = -n 
         
        return n 
     
    def get_local_curvature(self, z: float, theta: float) -> Tuple[float, float]: 
        """Compute principal curvatures at a surface point.""" 
        # Numerical computation of curvature tensor 
        h = 1e-5 
         
        # Get neighboring points for numerical differentiation 
        p_zp = self.get_surface_point(z + h, theta) 
        p_zm = self.get_surface_point(z - h, theta) 
        p_tp = self.get_surface_point(z, theta + h) 
        p_tm = self.get_surface_point(z, theta - h) 
        p_0 = self.get_surface_point(z, theta) 
         
        # First derivatives 
        r_z = (p_zp - p_zm) / (2 * h) 
        r_t = (p_tp - p_tm) / (2 * h) 
         
        # Second derivatives 
        r_zz = (p_zp - 2*p_0 + p_zm) / h**2 
        r_tt = (p_tp - 2*p_0 + p_tm) / h**2 
         
        p_zp_tp = self.get_surface_point(z + h, theta + h) 
        p_zm_tm = self.get_surface_point(z - h, theta - h) 
        p_zp_tm = self.get_surface_point(z + h, theta - h) 
        p_zm_tp = self.get_surface_point(z - h, theta + h) 
        r_zt = (p_zp_tp - p_zp_tm - p_zm_tp + p_zm_tm) / (4 * h**2) 
         
        # First fundamental form coefficients 
        E = np.dot(r_z, r_z) 
        F = np.dot(r_z, r_t) 
        G = np.dot(r_t, r_t) 
         
        # Normal vector 
        n = np.cross(r_z, r_t) 
        n = n / norm(n) 
         
        # Second fundamental form coefficients 
        L = np.dot(r_zz, n) 
        M = np.dot(r_zt, n) 
        N_coef = np.dot(r_tt, n) 
         
        # Principal curvatures from eigenvalue problem 
        discriminant = (E*N_coef - 2*F*M + G*L)**2 - 4*(E*G - F**2)*(L*N_coef - M**2) 
        if discriminant < 0: 
            discriminant = 0 
         
        H = (E*N_coef - 2*F*M + G*L) / (2*(E*G - F**2) + 1e-12) 
        K = (L*N_coef - M**2) / (E*G - F**2 + 1e-12) 
         
        kappa_1 = H + sqrt(max(H**2 - K, 0)) 
        kappa_2 = H - sqrt(max(H**2 - K, 0)) 
         
        return kappa_1, kappa_2 
     
    def generate_surface_mesh( 
        self,  
        n_axial: int = 200,  
        n_circumferential: int = 180 
    ) -> Tuple[np.ndarray, np.ndarray, np.ndarray]: 
        """Generate a complete surface mesh of the nozzle.""" 
        p = self.params 
         
        z_vals = np.linspace(-p.convergent_length, p.divergent_length, n_axial) 
        theta_vals = np.linspace(0, 2*pi, n_circumferential) 
         
        X = np.zeros((n_axial, n_circumferential)) 
        Y = np.zeros((n_axial, n_circumferential)) 
        Z = np.zeros((n_axial, n_circumferential)) 
         
        for i, z in enumerate(z_vals): 
            for j, theta in enumerate(theta_vals): 
                point = self.get_surface_point(z, theta) 
                X[i, j] = point[0] 
                Y[i, j] = point[1] 
                Z[i, j] = point[2] 
         
        return X, Y, Z 
     
    def get_cross_section_area(self, z: float, n_points: int = 360) -> float: 
        """Compute the cross-sectional area at axial position z.""" 
        theta_vals = np.linspace(0, 2*pi, n_points + 1)[:-1] 
        dtheta = 2*pi / n_points 
         
        area = 0.0 
        for theta in theta_vals: 
            r = self.get_radius(z, theta) 
            area += 0.5 * r**2 * dtheta 
         
        return area 
     
    def get_cross_section_perimeter(self, z: float, n_points: int = 360) -> float: 
        """Compute the cross-sectional perimeter at axial position z.""" 
        theta_vals = np.linspace(0, 2*pi, n_points + 1) 
         
        perimeter = 0.0 
        for i in range(n_points): 
            p1 = self.get_surface_point(z, theta_vals[i])[:2] 
            p2 = self.get_surface_point(z, theta_vals[i+1])[:2] 
            perimeter += norm(p2 - p1) 
         
        return perimeter 
     
    def get_hydraulic_diameter(self, z: float) -> float: 
        """Compute the hydraulic diameter at axial position z.""" 
        area = self.get_cross_section_area(z) 
        perimeter = self.get_cross_section_perimeter(z) 
        return 4.0 * area / perimeter 

# ============================================================================= 
# Compressible Flow Relations 
# ============================================================================= 

class CompressibleFlowRelations: 
    """Isentropic and shock relations for compressible gas dynamics.""" 
     
    def __init__(self, gamma: float): 
        self.gamma = gamma 
        self.g = gamma 
        self.gp1 = gamma + 1 
        self.gm1 = gamma - 1 
     
    def area_mach_relation(self, mach: float) -> float: 
        """Area ratio as function of Mach number (A/A*).""" 
        M = mach 
        g = self.gamma 
         
        term1 = 2.0 / (g + 1) 
        term2 = 1.0 + (g - 1) / 2.0 * M**2 
        exponent = (g + 1) / (2 * (g - 1)) 
         
        area_ratio = (1.0 / M) * (term1 * term2) ** exponent 
        return area_ratio 
     
    def mach_from_area_ratio( 
        self,  
        area_ratio: float,  
        supersonic: bool = True 
    ) -> float: 
        """Compute Mach number from area ratio.""" 
         
        def equation(M): 
            return self.area_mach_relation(M) - area_ratio 
         
        if supersonic: 
            M_guess = 2.0 
            M_bounds = (1.0001, 20.0) 
        else: 
            M_guess = 0.5 
            M_bounds = (0.001, 0.9999) 
         
        try: 
            result = brentq(equation, M_bounds[0], M_bounds[1]) 
        except ValueError: 
            result = newton(equation, M_guess) 
         
        return result 
     
    def pressure_ratio(self, mach: float) -> float: 
        """Static to total pressure ratio p/p₀.""" 
        g = self.gamma 

        return (1.0 + (g - 1) / 2.0 * mach**2) ** (-g / (g - 1)) 
     
    def temperature_ratio(self, mach: float) -> float: 
        """Static to total temperature ratio T/T₀.""" 
        g = self.gamma 
        return (1.0 + (g - 1) / 2.0 * mach**2) ** (-1) 
     
    def density_ratio(self, mach: float) -> float: 
        """Static to total density ratio ρ/ρ₀.""" 
        g = self.gamma 
        return (1.0 + (g - 1) / 2.0 * mach**2) ** (-1 / (g - 1)) 
     
    def prandtl_meyer_function(self, mach: float) -> float: 
        """Prandtl-Meyer expansion function ν(M) in radians.""" 
        if mach <= 1.0: 
            return 0.0 
         
        g = self.gamma 
        term1 = sqrt((g + 1) / (g - 1)) 
        term2 = arctan(sqrt((g - 1) / (g + 1) * (mach**2 - 1))) 
        term3 = arctan(sqrt(mach**2 - 1)) 
         
        return term1 * term2 - term3 
     
    def mach_from_prandtl_meyer(self, nu: float) -> float: 
        """Inverse Prandtl-Meyer function to get Mach from turning angle.""" 
         
        def equation(M): 
            return self.prandtl_meyer_function(M) - nu 
         
        # Newton-Raphson with numerical derivative 
        M = 2.0  # Initial guess 
        for _ in range(50): 
            f = equation(M) 
            if abs(f) < 1e-10: 
                break 
             
            h = 1e-6 
            df = (equation(M + h) - equation(M - h)) / (2 * h) 
            M = M - f / df 
            M = max(M, 1.001) 
         
        return M 
     
    def oblique_shock_angle( 
        self,  
        mach: float,  
        deflection: float,  
        weak: bool = True 
    ) -> float: 
        """Compute oblique shock wave angle from upstream Mach and deflection.""" 
        g = self.gamma 
        M = mach 
        delta = deflection 
         
        def equation(sigma): 
            if sigma <= delta or sigma >= pi/2: 
                return 1e10 
             
            tan_delta = tan(delta) 
            M_sin = M * sin(sigma) 
             
            if M_sin <= 1.0: 
                return 1e10 
             
            numerator = M**2 * sin(sigma)**2 - 1 
            denominator = M**2 * (g + cos(2*sigma)) + 2 
             
            return 2 * (1/tan(sigma)) * numerator / denominator - tan_delta 
         
        # Search for solution 
        if weak: 
            sigma_range = np.linspace(delta + 0.01, pi/2 - 0.01, 1000) 
        else: 
            sigma_range = np.linspace(pi/2 - 0.01, delta + 0.01, 1000) 
         
        for i in range(len(sigma_range) - 1): 
            if equation(sigma_range[i]) * equation(sigma_range[i+1]) < 0: 
                sigma = brentq(equation, sigma_range[i], sigma_range[i+1]) 
                return sigma 
         
        # Fallback to approximate relation 
        return delta + arcsin(1/M) 
     
    def normal_shock_pressure_ratio(self, mach: float) -> float: 
        """Pressure ratio across normal shock p₂/p₁.""" 
        g = self.gamma 
        M = mach 
        return 1 + 2*g/(g+1) * (M**2 - 1) 
     
    def normal_shock_downstream_mach(self, mach: float) -> float: 
        """Downstream Mach number after normal shock.""" 
        g = self.gamma 
        M = mach 
         
        M2_squared = (1 + (g-1)/2 * M**2) / (g * M**2 - (g-1)/2) 
        return sqrt(M2_squared) 
     
    def oblique_shock_pressure_ratio(self, mach: float, sigma: float) -> float: 
        """Pressure ratio across oblique shock.""" 
        M_n = mach * sin(sigma) 
        return self.normal_shock_pressure_ratio(M_n) 
     
    def speed_of_sound(self, temperature: float, R: float) -> float: 
        """Speed of sound from temperature and gas constant.""" 
        return sqrt(self.gamma * R * temperature) 

# ============================================================================= 
# Flow Field Solver 
# ============================================================================= 

class FlowFieldSolver: 
    """Quasi-one-dimensional flow solver with three-dimensional corrections.""" 
     
    def __init__( 
        self,  
        geometry: NozzleContourGenerator, 
        propellant: PropellantCombination, 
        chamber_pressure: float, 
        ambient_pressure: float 
    ): 
        self.geometry = geometry 
        self.propellant = propellant 
        self.p_c = chamber_pressure 
        self.p_a = ambient_pressure 
         
        self.gas_relations = CompressibleFlowRelations(propellant.specific_heat_ratio) 
        self.R = propellant.get_gas_constant() 
        self.T_c = propellant.combustion_temperature 
         
        self._solve_quasi_1d_flow() 
     
    def _solve_quasi_1d_flow(self): 
        """Solve the quasi-one-dimensional isentropic flow field.""" 
        p = self.geometry.params 
         
        # Create axial grid 
        n_stations = 500 
        self.z_stations = np.linspace(-p.convergent_length, p.divergent_length, n_stations) 
         
        # Initialize flow property arrays 
        self.mach = np.zeros(n_stations) 
        self.pressure = np.zeros(n_stations) 
        self.temperature = np.zeros(n_stations) 
        self.density = np.zeros(n_stations) 
        self.velocity = np.zeros(n_stations) 
        self.area = np.zeros(n_stations) 
         
        A_throat = p.throat_area 
        gamma = self.propellant.specific_heat_ratio 
         
        for i, z in enumerate(self.z_stations): 
            A = self.geometry.get_cross_section_area(z) 
            self.area[i] = A 
             
            area_ratio = A / A_throat 
             
            if z < 0: 
                # Subsonic convergent section 
                M = self.gas_relations.mach_from_area_ratio(area_ratio, supersonic=False) 
            elif z == 0: 
                M = 1.0 
            else: 
                # Supersonic divergent section 
                M = self.gas_relations.mach_from_area_ratio(area_ratio, supersonic=True) 
             
            self.mach[i] = M 
             
            # Isentropic relations 
            T_ratio = self.gas_relations.temperature_ratio(M) 
            p_ratio = self.gas_relations.pressure_ratio(M) 
            rho_ratio = self.gas_relations.density_ratio(M) 
             
            self.temperature[i] = self.T_c * T_ratio 
            self.pressure[i] = self.p_c * p_ratio 
            self.density[i] = self.propellant.get_density(self.p_c, self.T_c) * rho_ratio 
             
            a = self.gas_relations.speed_of_sound(self.temperature[i], self.R) 
            self.velocity[i] = M * a 
         
        # Exit conditions 
        self.mach_exit = self.mach[-1] 

New York General Group 14



Multi-Stage Propulsion System with Variable-Geometry Corrugate Lobe Exhaust Architecture for Enhanced Supersonic Thrust Vectoring and Mixing Efficiency 

        self.pressure_exit = self.pressure[-1] 
        self.temperature_exit = self.temperature[-1] 
        self.density_exit = self.density[-1] 
        self.velocity_exit = self.velocity[-1] 
         
        # Create interpolation functions 
        self._create_interpolators() 
     
    def _create_interpolators(self): 
        """Create interpolation functions for flow properties.""" 
        self.mach_interp = interp1d(self.z_stations, self.mach, kind='cubic') 
        self.pressure_interp = interp1d(self.z_stations, self.pressure, kind='cubic') 
        self.temperature_interp = interp1d(self.z_stations, self.temperature, kind='cubic') 
        self.density_interp = interp1d(self.z_stations, self.density, kind='cubic') 
        self.velocity_interp = interp1d(self.z_stations, self.velocity, kind='cubic') 
     
    def get_mach(self, z: float) -> float: 
        """Get Mach number at axial position z.""" 
        return float(self.mach_interp(z)) 
     
    def get_pressure(self, z: float) -> float: 
        """Get static pressure at axial position z.""" 
        return float(self.pressure_interp(z)) 
     
    def get_temperature(self, z: float) -> float: 
        """Get static temperature at axial position z.""" 
        return float(self.temperature_interp(z)) 
     
    def get_density(self, z: float) -> float: 
        """Get density at axial position z.""" 
        return float(self.density_interp(z)) 
     
    def get_velocity(self, z: float) -> float: 
        """Get flow velocity at axial position z.""" 
        return float(self.velocity_interp(z)) 
     
    def compute_3d_pressure_field( 
        self,  
        z: float,  
        theta: float 
    ) -> float: 
        """Compute local pressure including three-dimensional effects.""" 
        p = self.geometry.params 
         
        if z < p.corrugation_start_position: 
            return self.get_pressure(z) 
         
        # Base pressure from quasi-1D solution 
        p_base = self.get_pressure(z) 
        M = self.get_mach(z) 
        gamma = self.propellant.specific_heat_ratio 
         
        # Local wall curvature effect 
        r_mean = self.geometry.get_mean_radius(z) 
        amplitude = self.geometry.get_amplitude(z) 
        N = p.number_of_lobes 
        phi = p.lobe_phase_angle 
         
        # Circumferential variation due to lobe geometry 
        # Pressure increases at troughs (convex wall), decreases at peaks (concave wall) 
        curvature_perturbation = amplitude * N**2 * cos(N * theta + phi) / r_mean**2 
         
        # Pressure perturbation from centrifugal effects 
        rho = self.get_density(z) 
        u = self.get_velocity(z) 
         
        delta_p = -rho * u**2 * curvature_perturbation / (1 + (gamma - 1)/2 * M**2) 
         
        return p_base + delta_p 
     
    def compute_circumferential_velocity( 
        self,  
        z: float,  
        theta: float 
    ) -> float: 
        """Compute circumferential velocity component induced by lobe geometry.""" 
        p = self.geometry.params 
         
        if z < p.corrugation_start_position: 
            return 0.0 
         
        M = self.get_mach(z) 
        u = self.get_velocity(z) 
         
        amplitude = self.geometry.get_amplitude(z) 
        r_mean = self.geometry.get_mean_radius(z) 
        N = p.number_of_lobes 
        phi = p.lobe_phase_angle 
         
        # Estimate circumferential velocity from pressure gradient 
        # and momentum conservation 
        v_theta = u * amplitude * N * sin(N * theta + phi) / r_mean 
         
        return v_theta 
     
    def compute_mass_flow_rate(self) -> float: 
        """Compute the mass flow rate through the nozzle.""" 
        p = self.geometry.params 
        gamma = self.propellant.specific_heat_ratio 
         
        # Critical mass flux 
        m_dot = ( 
            p.throat_area * self.p_c /  
            sqrt(self.R * self.T_c) *  
            sqrt(gamma) *  
            (2 / (gamma + 1)) ** ((gamma + 1) / (2 * (gamma - 1))) 
        ) 
         
        return m_dot 
     
    def compute_thrust(self) -> float: 
        """Compute the thrust produced by the nozzle.""" 
        m_dot = self.compute_mass_flow_rate() 
        p = self.geometry.params 
         
        # Momentum thrust 
        F_momentum = m_dot * self.velocity_exit 
         
        # Pressure thrust 
        F_pressure = (self.pressure_exit - self.p_a) * p.exit_area 
         
        return F_momentum + F_pressure 
     
    def compute_thrust_coefficient(self) -> float: 
        """Compute the thrust coefficient.""" 
        F = self.compute_thrust() 
        p = self.geometry.params 
         
        return F / (self.p_c * p.throat_area) 
     
    def compute_specific_impulse(self) -> float: 
        """Compute the specific impulse in seconds.""" 
        F = self.compute_thrust() 
        m_dot = self.compute_mass_flow_rate() 
         
        return F / (m_dot * PhysicalConstants.STANDARD_GRAVITY) 
     
    def compute_ideal_thrust_coefficient(self) -> float: 
        """Compute the ideal (loss-free) thrust coefficient.""" 
        gamma = self.propellant.specific_heat_ratio 
        p_e = self.pressure_exit 
        p_a = self.p_a 
        p = self.geometry.params 
         
        term1 = 2 * gamma**2 / (gamma - 1) 
        term2 = (2 / (gamma + 1)) ** ((gamma + 1) / (gamma - 1)) 
        term3 = 1 - (p_e / self.p_c) ** ((gamma - 1) / gamma) 
         
        C_F_ideal = sqrt(term1 * term2 * term3) 
        C_F_ideal += (p_e - p_a) / self.p_c * p.area_ratio 
         
        return C_F_ideal 
     
    def compute_nozzle_efficiency(self) -> float: 
        """Compute the nozzle efficiency.""" 
        C_F_actual = self.compute_thrust_coefficient() 
        C_F_ideal = self.compute_ideal_thrust_coefficient() 
         
        return C_F_actual / C_F_ideal 

# ============================================================================= 
# Vortex Generation and Mixing Analysis 
# ============================================================================= 

class VortexAnalyzer: 
    """Analysis of vortex generation and mixing enhancement.""" 
     
    def __init__( 
        self,  
        geometry: NozzleContourGenerator, 
        flow_solver: FlowFieldSolver 
    ): 
        self.geometry = geometry 
        self.flow = flow_solver 
        self.params = geometry.params 
         
        self._compute_vortex_characteristics() 
     
    def _compute_vortex_characteristics(self): 
        """Compute vortex strength and distribution through the corrugated section.""" 
        p = self.params 
         

        n_stations = 100 
        z_corr = np.linspace( 
            p.corrugation_start_position, 
            p.divergent_length, 
            n_stations 
        ) 
         
        self.z_vortex = z_corr 
        self.circulation = np.zeros(n_stations) 
        self.core_radius = np.zeros(n_stations) 
        self.vorticity_max = np.zeros(n_stations) 
         
        gamma = self.flow.propellant.specific_heat_ratio 
         
        for i, z in enumerate(z_corr): 
            # Flow properties at this station 
            rho = self.flow.get_density(z) 
            u = self.flow.get_velocity(z) 
            M = self.flow.get_mach(z) 
            p_static = self.flow.get_pressure(z) 
             
            # Geometric properties 
            amplitude = self.geometry.get_amplitude(z) 
            r_mean = self.geometry.get_mean_radius(z) 
            N = p.number_of_lobes 
             
            # Estimate circulation from baroclinic generation 
            # Using pressure and density gradient cross-product 
            dp_dtheta = rho * u**2 * amplitude * N / r_mean 
            drho_dr = rho * gamma * M**2 / r_mean 
             
            # Baroclinic torque contribution 
            omega_z = dp_dtheta * drho_dr / (rho**2 * u) 
             
            # Integrate over the lobe region to get circulation 
            delta_r = amplitude * 2  # Effective radial extent 
            delta_theta = 2 * pi / N  # Angular extent per lobe 
             
            Gamma = omega_z * delta_r * delta_theta * r_mean 
             
            # Core radius estimate from viscous diffusion 
            nu = self.flow.propellant.get_viscosity( 
                self.flow.get_temperature(z) 
            ) / rho 
             
            # Time for flow to reach this station from corrugation start 
            avg_velocity = 0.5 * ( 
                self.flow.get_velocity(p.corrugation_start_position) + u 
            ) 
            t_travel = (z - p.corrugation_start_position) / avg_velocity 
             
            r_c = sqrt(4 * nu * t_travel + (amplitude / 4)**2) 
             
            self.circulation[i] = abs(Gamma) 
            self.core_radius[i] = r_c 
            self.vorticity_max[i] = abs(Gamma) / (pi * r_c**2) 
         
        # Exit plane values 
        self.circulation_exit = self.circulation[-1] 
        self.core_radius_exit = self.core_radius[-1] 
     
    def compute_tangential_velocity_profile( 
        self,  
        z: float,  
        r_from_core: np.ndarray 
    ) -> np.ndarray: 
        """Compute tangential velocity distribution around a vortex core.""" 
        # Find nearest station 
        idx = np.argmin(np.abs(self.z_vortex - z)) 
        Gamma = self.circulation[idx] 
        r_c = self.core_radius[idx] 
         
        # Lamb-Oseen vortex model 
        u_theta = (Gamma / (2 * pi * (r_from_core + 1e-10))) * ( 
            1 - np.exp(-r_from_core**2 / r_c**2) 
        ) 
         
        return u_theta 
     
    def compute_mixing_length(self) -> float: 
        """Estimate the mixing length scale for the corrugated nozzle.""" 
        p = self.params 
         
        # Characteristic length scale from circulation and velocity 
        u_exit = self.flow.velocity_exit 
        Gamma = self.circulation_exit 
         
        # Mixing length approximation 
        L_m = (p.exit_radius * 2) * u_exit / (Gamma / (p.exit_radius * 2) + 1e-10) 
         
        # Apply empirical correction factor 
        L_m *= 0.5  # Empirical factor for lobed mixers 
         
        return L_m 
     
    def compute_mixed_mass_fraction(self, x_downstream: float) -> float: 
        """Compute the mixed mass fraction at distance x downstream of exit.""" 
        L_m = self.compute_mixing_length() 
         
        eta_m = 1 - exp(-x_downstream / L_m) 
         
        return eta_m 
     
    def compute_entrainment_rate(self, x_downstream: float) -> float: 
        """Compute the mass entrainment rate at distance x from exit.""" 
        p = self.params 
         
        # Jet diameter at exit 
        D_e = 2 * p.exit_radius 
         
        # Entrainment coefficient enhancement from lobes 
        C_e = 0.32 * (1 + 0.5 * p.penetration_parameter) 
         
        # Core mass flow rate 
        m_dot_core = self.flow.compute_mass_flow_rate() 
         
        # Entrainment rate 
        dm_dx = C_e * m_dot_core / D_e 
         
        return dm_dx 
     
    def compute_jet_half_width(self, x_downstream: float) -> float: 
        """Compute the jet half-width at distance x from exit.""" 
        p = self.params 
         
        D_e = 2 * p.exit_radius 
         
        # Enhanced spreading rate from lobe mixing 
        spreading_rate = 0.10 * (1 + 0.4 * p.penetration_parameter) 
         
        r_half = p.exit_radius + spreading_rate * x_downstream 
         
        return r_half 

# ============================================================================= 
# Shock Structure Analysis 
# ============================================================================= 

class ShockStructureAnalyzer: 
    """Analysis of shock wave patterns in the corrugated section.""" 
     
    def __init__( 
        self,  
        geometry: NozzleContourGenerator, 
        flow_solver: FlowFieldSolver 
    ): 
        self.geometry = geometry 
        self.flow = flow_solver 
        self.params = geometry.params 
        self.gas = flow_solver.gas_relations 
         
        self._analyze_shock_pattern() 
     
    def _analyze_shock_pattern(self): 
        """Analyze the internal shock structure created by lobe geometry.""" 
        p = self.params 
         
        n_stations = 50 
        z_corr = np.linspace( 
            p.corrugation_start_position + 0.01, 
            p.divergent_length, 
            n_stations 
        ) 
         
        self.z_shock = z_corr 
        self.shock_angles = np.zeros((n_stations, p.number_of_lobes)) 
        self.pressure_ratios = np.zeros((n_stations, p.number_of_lobes)) 
        self.entropy_rise = np.zeros(n_stations) 
         
        gamma = self.flow.propellant.specific_heat_ratio 
         
        for i, z in enumerate(z_corr): 
            M = self.flow.get_mach(z) 
             
            # Wall deflection angle at lobe peaks 
            # Compute from geometry derivative 
            dz = 0.001 
             
            for j in range(p.number_of_lobes): 
                theta_peak = (2 * pi * j) / p.number_of_lobes + p.lobe_phase_angle / p.number_of_lobes 
                 
                r1 = self.geometry.get_radius(z - dz, theta_peak) 

New York General Group 15



Multi-Stage Propulsion System with Variable-Geometry Corrugate Lobe Exhaust Architecture for Enhanced Supersonic Thrust Vectoring and Mixing Efficiency 

                r2 = self.geometry.get_radius(z + dz, theta_peak) 
                 
                dr_dz = (r2 - r1) / (2 * dz) 
                 
                # Local wall angle 
                wall_angle = arctan(dr_dz) 
                 
                # Flow deflection angle (difference from axial) 
                delta = abs(wall_angle) 
                 
                if delta > 0.001 and M > 1.0: 
                    try: 
                        sigma = self.gas.oblique_shock_angle(M, delta, weak=True) 
                        p_ratio = self.gas.oblique_shock_pressure_ratio(M, sigma) 
                    except: 
                        sigma = pi/2 
                        p_ratio = 1.0 
                else: 
                    sigma = pi/2 
                    p_ratio = 1.0 
                 
                self.shock_angles[i, j] = sigma 
                self.pressure_ratios[i, j] = p_ratio 
             
            # Average entropy rise across all shocks at this station 
            avg_p_ratio = np.mean(self.pressure_ratios[i, :]) 
            if avg_p_ratio > 1.0: 
                self.entropy_rise[i] = log(avg_p_ratio) / (gamma - 1) 
            else: 
                self.entropy_rise[i] = 0.0 
     
    def compute_coalescence_distance(self) -> float: 
        """Compute the distance downstream where shock waves coalesce.""" 
        p = self.params 
         
        # Geometric coefficient 
        C_c = 2.5 * (p.number_of_lobes / 8) ** 0.5 
         
        # Exit diameter 
        D_e = 2 * p.exit_radius 
         
        # Nozzle pressure ratio effect 
        npr = self.flow.pressure_exit / self.flow.p_a 
         
        x_c = C_c * D_e * npr ** 0.4 
         
        return x_c 
     
    def compute_total_pressure_loss(self) -> float: 
        """Compute the total pressure loss due to internal shocks.""" 
        gamma = self.flow.propellant.specific_heat_ratio 
         
        # Integrate entropy rise 
        total_ds = np.trapz(self.entropy_rise, self.z_shock) 
         
        # Convert to total pressure loss 
        p0_ratio = exp(-total_ds * (gamma - 1) / gamma) 
         
        loss_fraction = 1 - p0_ratio 
         
        return loss_fraction 
     
    def compute_shock_efficiency_penalty(self) -> float: 
        """Compute the nozzle efficiency penalty from shock losses.""" 
        p0_loss = self.compute_total_pressure_loss() 
         
        # Approximate efficiency penalty 
        gamma = self.flow.propellant.specific_heat_ratio 
         
        eta_shock = 1 - p0_loss * (gamma + 1) / (2 * gamma) 
         
        return 1 - eta_shock 

# ============================================================================= 
# Boundary Layer Analysis 
# ============================================================================= 

class BoundaryLayerSolver: 
    """Compressible turbulent boundary layer analysis.""" 
     
    def __init__( 
        self,  
        geometry: NozzleContourGenerator, 
        flow_solver: FlowFieldSolver 
    ): 
        self.geometry = geometry 
        self.flow = flow_solver 
        self.params = geometry.params 
        self.propellant = flow_solver.propellant 
         
        self._solve_boundary_layer() 
     
    def _solve_boundary_layer(self): 
        """Solve the boundary layer development along the nozzle.""" 
        p = self.params 
         
        n_stations = 200 
        self.z_bl = np.linspace(0.001, p.divergent_length, n_stations) 
         
        self.momentum_thickness = np.zeros(n_stations) 
        self.displacement_thickness = np.zeros(n_stations) 
        self.shape_factor = np.zeros(n_stations) 
        self.skin_friction = np.zeros(n_stations) 
        self.wall_shear = np.zeros(n_stations) 
        self.boundary_layer_thickness = np.zeros(n_stations) 
         
        # Initial conditions at throat 
        theta_0 = 1e-6  # Initial momentum thickness 
         
        # Solve using integral method 
        theta = theta_0 
         
        for i, z in enumerate(self.z_bl): 
            # Flow conditions at edge of boundary layer 
            M_e = self.flow.get_mach(z) 
            T_e = self.flow.get_temperature(z) 
            p_e = self.flow.get_pressure(z) 
            rho_e = self.flow.get_density(z) 
            u_e = self.flow.get_velocity(z) 
             
            # Viscosity at edge 
            mu_e = self.propellant.get_viscosity(T_e) 
             
            # Reynolds number based on momentum thickness 
            Re_theta = rho_e * u_e * theta / mu_e 
             
            # Skin friction coefficient (Schultz-Grunow) 
            if Re_theta > 100: 
                C_f = 0.370 * (log10(Re_theta)) ** (-2.584) 
            else: 
                C_f = 0.664 / sqrt(Re_theta + 1) 
             
            # Compressibility correction (van Driest II) 
            T_w = self._estimate_wall_temperature(z) 
            T_aw = self._adiabatic_wall_temperature(T_e, M_e) 
             
            F_c = (T_aw / T_e) * (1 + 0.035 * M_e**2 + 0.45 * (T_w / T_aw - 1)) 
             
            C_f_comp = C_f / F_c 
             
            # Wall shear stress 
            tau_w = 0.5 * C_f_comp * rho_e * u_e**2 
             
            # Pressure gradient parameter 
            r_local = self.geometry.get_mean_radius(z) 
             
            if i > 0: 
                du_dz = (u_e - self.flow.get_velocity(self.z_bl[i-1])) / (z - self.z_bl[i-1]) 
                dr_dz = (r_local - self.geometry.get_mean_radius(self.z_bl[i-1])) / (z - self.z_bl[i-1]) 
            else: 
                du_dz = 0 
                dr_dz = 0 
             
            # Momentum integral equation 
            # dθ/dz = C_f/2 - θ/u_e * du_e/dz * (H + 2 - M_e²) - θ/r * dr/dz 
             
            H = 1.4  # Initial shape factor estimate for turbulent flow 
             
            d_theta_dz = ( 
                C_f_comp / 2 -  
                theta / (u_e + 1e-10) * du_dz * (H + 2 - M_e**2) - 
                theta / (r_local + 1e-10) * dr_dz 
            ) 
             
            # Update momentum thickness 
            if i > 0: 
                dz = self.z_bl[i] - self.z_bl[i-1] 
                theta = theta + d_theta_dz * dz 
                theta = max(theta, 1e-8) 
             
            # Displacement thickness from shape factor 
            delta_star = H * theta 
             
            # Boundary layer thickness estimate 
            delta = 8 * theta  # Approximate relation for turbulent BL 
             
            # Store results 
            self.momentum_thickness[i] = theta 
            self.displacement_thickness[i] = delta_star 
            self.shape_factor[i] = H 
            self.skin_friction[i] = C_f_comp 
            self.wall_shear[i] = tau_w 

            self.boundary_layer_thickness[i] = delta 
     
    def _estimate_wall_temperature(self, z: float) -> float: 
        """Estimate wall temperature for given cooling conditions.""" 
        T_e = self.flow.get_temperature(z) 
        T_c = 400.0  # Coolant temperature assumption 
         
        # Simple thermal equilibrium estimate 
        T_w = 0.7 * T_e + 0.3 * T_c 
         
        return T_w 
     
    def _adiabatic_wall_temperature(self, T_e: float, M_e: float) -> float: 
        """Compute adiabatic wall temperature.""" 
        gamma = self.propellant.specific_heat_ratio 
        r = 0.9  # Recovery factor for turbulent flow 
         
        T_aw = T_e * (1 + r * (gamma - 1) / 2 * M_e**2) 
         
        return T_aw 
     
    def get_momentum_thickness(self, z: float) -> float: 
        """Get momentum thickness at axial position z.""" 
        interp = interp1d(self.z_bl, self.momentum_thickness, fill_value='extrapolate') 
        return float(interp(z)) 
     
    def get_displacement_thickness(self, z: float) -> float: 
        """Get displacement thickness at axial position z.""" 
        interp = interp1d(self.z_bl, self.displacement_thickness, fill_value='extrapolate') 
        return float(interp(z)) 
     
    def get_shape_factor(self, z: float) -> float: 
        """Get shape factor at axial position z.""" 
        interp = interp1d(self.z_bl, self.shape_factor, fill_value='extrapolate') 
        return float(interp(z)) 
     
    def check_separation(self) -> Tuple[bool, float]: 
        """Check if flow separation occurs in the nozzle.""" 
        H_sep = 3.0  # Critical shape factor for separation 
         
        max_H = np.max(self.shape_factor) 
        z_max_H = self.z_bl[np.argmax(self.shape_factor)] 
         
        separated = max_H > H_sep 
         
        return separated, z_max_H 
     
    def compute_boundary_layer_loss(self) -> float: 
        """Compute the thrust loss due to boundary layer momentum deficit.""" 
        p = self.params 
         
        # Exit momentum thickness 
        theta_exit = self.momentum_thickness[-1] 
         
        # Exit perimeter 
        perimeter = self.geometry.get_cross_section_perimeter(p.divergent_length) 
         
        # Momentum deficit 
        rho_e = self.flow.density_exit 
        u_e = self.flow.velocity_exit 
         
        momentum_loss = rho_e * u_e**2 * theta_exit * perimeter 
         
        # As fraction of ideal thrust 
        F_ideal = self.flow.compute_thrust() 
         
        loss_fraction = momentum_loss / F_ideal 
         
        return loss_fraction 
     
    def compute_effective_area_ratio(self) -> float: 
        """Compute effective area ratio accounting for displacement thickness.""" 
        p = self.params 
         
        delta_star_exit = self.displacement_thickness[-1] 
        D_e = 2 * p.exit_radius 
         
        correction = 1 - 2 * delta_star_exit / D_e 
         
        epsilon_eff = p.area_ratio * correction 
         
        return epsilon_eff 

# ============================================================================= 
# Thermal Analysis 
# ============================================================================= 

class ThermalAnalyzer: 
    """Complete thermal analysis including heat transfer and cooling.""" 
     
    def __init__( 
        self,  
        geometry: NozzleContourGenerator, 
        flow_solver: FlowFieldSolver, 
        wall_material: MaterialProperties, 
        wall_thickness: float, 
        coolant_properties: Dict[str, float] 
    ): 
        self.geometry = geometry 
        self.flow = flow_solver 
        self.material = wall_material 
        self.t_wall = wall_thickness 
        self.coolant = coolant_properties 
        self.params = geometry.params 
         
        self._solve_thermal_field() 
     
    def _solve_thermal_field(self): 
        """Solve the thermal field in the nozzle wall.""" 
        p = self.params 
         
        n_axial = 100 
        n_circum = 36 
         
        self.z_thermal = np.linspace(0.01, p.divergent_length, n_axial) 
        self.theta_thermal = np.linspace(0, 2*pi, n_circum) 
         
        self.T_wall_hot = np.zeros((n_axial, n_circum)) 
        self.T_wall_cold = np.zeros((n_axial, n_circum)) 
        self.heat_flux = np.zeros((n_axial, n_circum)) 
        self.thermal_stress = np.zeros((n_axial, n_circum)) 
         
        for i, z in enumerate(self.z_thermal): 
            for j, theta in enumerate(self.theta_thermal): 
                # Hot gas conditions 
                T_e = self.flow.get_temperature(z) 
                p_e = self.flow.get_pressure(z) 
                M_e = self.flow.get_mach(z) 
                rho_e = self.flow.get_density(z) 
                u_e = self.flow.get_velocity(z) 
                 
                # Adiabatic wall temperature 
                gamma = self.flow.propellant.specific_heat_ratio 
                r = 0.9 
                T_aw = T_e * (1 + r * (gamma - 1) / 2 * M_e**2) 
                 
                # Hot gas heat transfer coefficient (Bartz correlation) 
                h_g = self._bartz_coefficient(z, theta) 
                 
                # Apply 3D correction for lobe geometry 
                if z > p.corrugation_start_position: 
                    curvature_factor = self._curvature_enhancement(z, theta) 
                    h_g *= curvature_factor 
                 
                # Coolant heat transfer coefficient 
                h_c = self._coolant_coefficient(z) 
                 
                # Coolant temperature 
                T_c = self.coolant['inlet_temperature'] 
                 
                # Wall thermal conductivity 
                T_wall_avg = (T_aw + T_c) / 2 
                k_w = self.material.get_thermal_conductivity_at_temperature(T_wall_avg) 
                 
                # Solve for wall temperatures 
                # Energy balance: h_g * (T_aw - T_wh) = k_w/t * (T_wh - T_wc) = h_c * (T_wc - T_c) 
                 
                R_g = 1 / h_g 
                R_w = self.t_wall / k_w 
                R_c = 1 / h_c 
                 
                R_total = R_g + R_w + R_c 
                 
                q = (T_aw - T_c) / R_total 
                 
                T_wh = T_aw - q * R_g 
                T_wc = T_c + q * R_c 
                 
                self.heat_flux[i, j] = q 
                self.T_wall_hot[i, j] = T_wh 
                self.T_wall_cold[i, j] = T_wc 
                 
                # Thermal stress 
                delta_T = T_wh - T_wc 
                E = self.material.get_elastic_modulus_at_temperature(T_wall_avg) 
                alpha = self.material.thermal_expansion 
                nu = self.material.poisson_ratio 
                 
                sigma_th = E * alpha * delta_T / (2 * (1 - nu)) 
                self.thermal_stress[i, j] = sigma_th 
         
        # Find maximum values 

New York General Group 16



Multi-Stage Propulsion System with Variable-Geometry Corrugate Lobe Exhaust Architecture for Enhanced Supersonic Thrust Vectoring and Mixing Efficiency 

        self.T_wall_max = np.max(self.T_wall_hot) 
        self.heat_flux_max = np.max(self.heat_flux) 
        self.thermal_stress_max = np.max(self.thermal_stress) 
     
    def _bartz_coefficient(self, z: float, theta: float) -> float: 
        """Compute Bartz heat transfer coefficient.""" 
        p = self.params 
        prop = self.flow.propellant 
         
        D_t = 2 * p.throat_radius 
        A_t = p.throat_area 
        A = self.geometry.get_cross_section_area(z) 
         
        p_c = self.flow.p_c 
        c_star = prop.characteristic_velocity 
         
        # Reference conditions 
        T_c = prop.combustion_temperature 
        mu_0 = prop.get_viscosity(T_c) 
        cp = prop.specific_heat_constant_pressure 
        Pr = prop.prandtl_number 
        gamma = prop.specific_heat_ratio 
         
        # Bartz correlation 
        sigma = 1.0  # Correction factor (simplified) 
         
        h_g = ( 
            0.026 / D_t**0.2 * 
            (mu_0**0.2 * cp / Pr**0.6) * 
            (p_c / c_star)**0.8 * 
            (D_t / (p.throat_radius_of_curvature_downstream * 2))**0.1 * 
            (A_t / A)**0.9 * 
            sigma 
        ) 
         
        return h_g 
     
    def _curvature_enhancement(self, z: float, theta: float) -> float: 
        """Compute heat transfer enhancement due to wall curvature.""" 
        kappa_1, kappa_2 = self.geometry.get_local_curvature(z, theta) 
         
        # Mean curvature 
        H = (kappa_1 + kappa_2) / 2 
         
        # Enhancement factor (empirical) 
        if H > 0:  # Convex surface (trough) 
            factor = 1 + 0.1 * abs(H) * self.geometry.get_mean_radius(z) 
        else:  # Concave surface (peak) 
            factor = 1 + 0.2 * abs(H) * self.geometry.get_mean_radius(z) 
         
        return min(factor, 2.0) 
     
    def _coolant_coefficient(self, z: float) -> float: 
        """Compute coolant-side heat transfer coefficient.""" 
        # Dittus-Boelter correlation 
        D_h = self.coolant['hydraulic_diameter'] 
        k_c = self.coolant['thermal_conductivity'] 
        Re = self.coolant['reynolds_number'] 
        Pr = self.coolant['prandtl_number'] 
         
        Nu = 0.023 * Re**0.8 * Pr**0.4 
        h_c = Nu * k_c / D_h 
         
        return h_c 
     
    def compute_thermal_effectiveness(self) -> float: 
        """Compute the thermal effectiveness of the cooling system.""" 
        T_c_in = self.coolant['inlet_temperature'] 
        T_aw_max = np.max(self._compute_adiabatic_wall_temps()) 
         
        epsilon = (self.T_wall_max - T_c_in) / (T_aw_max - T_c_in) 
         
        return epsilon 
     
    def _compute_adiabatic_wall_temps(self) -> np.ndarray: 
        """Compute adiabatic wall temperature distribution.""" 
        gamma = self.flow.propellant.specific_heat_ratio 
        r = 0.9 
         
        T_aw = np.zeros(len(self.z_thermal)) 
        for i, z in enumerate(self.z_thermal): 
            T_e = self.flow.get_temperature(z) 
            M_e = self.flow.get_mach(z) 
            T_aw[i] = T_e * (1 + r * (gamma - 1) / 2 * M_e**2) 
         
        return T_aw 
     
    def compute_total_heat_load(self) -> float: 
        """Compute total heat load to the cooling system.""" 
        p = self.params 
         
        # Integrate heat flux over the wall surface 
        total_heat = 0.0 
         
        for i in range(len(self.z_thermal) - 1): 
            z_mid = (self.z_thermal[i] + self.z_thermal[i+1]) / 2 
            dz = self.z_thermal[i+1] - self.z_thermal[i] 
             
            perimeter = self.geometry.get_cross_section_perimeter(z_mid) 
            q_avg = np.mean(self.heat_flux[i, :]) 
             
            total_heat += q_avg * perimeter * dz 
         
        return total_heat 
     
    def compute_coolant_temperature_rise(self) -> float: 
        """Compute the coolant temperature rise through the cooling circuit.""" 
        Q = self.compute_total_heat_load() 
         
        m_dot_c = self.coolant['mass_flow_rate'] 
        cp_c = self.coolant['specific_heat'] 
         
        delta_T = Q / (m_dot_c * cp_c) 
         
        return delta_T 
     
    def compute_coolant_pressure_drop(self) -> float: 
        """Compute the pressure drop in the cooling circuit.""" 
        p = self.params 
         
        f = self.coolant['friction_factor'] 
        L_c = p.divergent_length * 2  # Approximate coolant path length 
        D_h = self.coolant['hydraulic_diameter'] 
        rho_c = self.coolant['density'] 
        u_c = self.coolant['velocity'] 
         
        # Friction loss 
        delta_p_friction = f * L_c / D_h * 0.5 * rho_c * u_c**2 
         
        # Minor losses (entrance, exit, bends) 
        K_total = 2.5  # Sum of loss coefficients 
        delta_p_minor = K_total * 0.5 * rho_c * u_c**2 
         
        return delta_p_friction + delta_p_minor 
     
    def check_thermal_limits(self) -> Dict[str, bool]: 
        """Check if thermal limits are satisfied.""" 
        limits = { 
            'wall_temperature': self.T_wall_max < self.material.max_service_temperature, 
            'thermal_stress': self.thermal_stress_max < self.material.get_yield_strength_at_temperature(self.T_wall_max) / 2 
        } 
         
        return limits 

# ============================================================================= 
# Structural Analysis 
# ============================================================================= 

class StructuralAnalyzer: 
    """Structural analysis of the corrugated nozzle shell.""" 
     
    def __init__( 
        self,  
        geometry: NozzleContourGenerator, 
        flow_solver: FlowFieldSolver, 
        thermal_analyzer: ThermalAnalyzer, 
        wall_material: MaterialProperties, 
        wall_thickness: float 
    ): 
        self.geometry = geometry 
        self.flow = flow_solver 
        self.thermal = thermal_analyzer 
        self.material = wall_material 
        self.t_wall = wall_thickness 
        self.params = geometry.params 
         
        self._solve_stress_field() 
     
    def _solve_stress_field(self): 
        """Solve the stress field in the nozzle wall.""" 
        p = self.params 
         
        n_axial = 100 
        n_circum = 36 
         
        self.z_stress = np.linspace(0.01, p.divergent_length, n_axial) 
        self.theta_stress = np.linspace(0, 2*pi, n_circum) 
         
        self.sigma_hoop = np.zeros((n_axial, n_circum)) 
        self.sigma_axial = np.zeros((n_axial, n_circum)) 
        self.sigma_von_mises = np.zeros((n_axial, n_circum)) 
        self.safety_factor = np.zeros((n_axial, n_circum)) 

         
        for i, z in enumerate(self.z_stress): 
            p_local = self.flow.get_pressure(z) 
             
            for j, theta in enumerate(self.theta_stress): 
                r = self.geometry.get_radius(z, theta) 
                kappa_1, kappa_2 = self.geometry.get_local_curvature(z, theta) 
                 
                # Radius of curvature in hoop direction 
                if abs(kappa_2) > 1e-10: 
                    rho_c = 1 / abs(kappa_2) 
                else: 
                    rho_c = r  # Circular section 
                 
                # Hoop stress (modified for non-circular section) 
                sigma_h = p_local * r / (rho_c * self.t_wall) * rho_c 
                 
                # Axial stress (from end cap pressure) 
                sigma_a = p_local * r / (2 * self.t_wall) 
                 
                # Add thermal stress 
                i_th = min(i, len(self.thermal.z_thermal) - 1) 
                j_th = min(j, len(self.thermal.theta_thermal) - 1) 
                sigma_thermal = self.thermal.thermal_stress[i_th, j_th] 
                 
                sigma_h += sigma_thermal 
                sigma_a += sigma_thermal * 0.5 
                 
                # Von Mises equivalent stress 
                sigma_vm = sqrt(sigma_h**2 + sigma_a**2 - sigma_h * sigma_a) 
                 
                # Material strength at local temperature 
                T_local = self.thermal.T_wall_hot[i_th, j_th] 
                sigma_yield = self.material.get_yield_strength_at_temperature(T_local) 
                 
                # Safety factor 
                SF = sigma_yield / (sigma_vm + 1) 
                 
                self.sigma_hoop[i, j] = sigma_h 
                self.sigma_axial[i, j] = sigma_a 
                self.sigma_von_mises[i, j] = sigma_vm 
                self.safety_factor[i, j] = SF 
         
        self.sigma_max = np.max(self.sigma_von_mises) 
        self.SF_min = np.min(self.safety_factor) 
     
    def compute_fatigue_life(self, sigma_alternating: float) -> float: 
        """Estimate fatigue life in cycles.""" 
        A = self.material.fatigue_coefficient 
        b = self.material.fatigue_exponent 
         
        N_f = (sigma_alternating / A) ** (-1 / b) 
         
        return N_f 
     
    def compute_buckling_margin(self) -> float: 
        """Compute the buckling margin for the shell structure.""" 
        p = self.params 
         
        # Critical buckling pressure for thin-walled cylinder 
        E = self.material.elastic_modulus 
        nu = self.material.poisson_ratio 
         
        r = p.exit_radius 
        t = self.t_wall 
        L = p.divergent_length 
         
        # Classical buckling formula (simplified) 
        p_cr = 0.92 * E * (t / r)**2 / sqrt(1 - nu**2) 
         
        # Actual external pressure (maximum possible) 
        p_ext = self.flow.p_a 
         
        buckling_margin = p_cr / p_ext 
         
        return buckling_margin 
     
    def compute_creep_life(self, operating_hours: float) -> float: 
        """Estimate creep life at operating conditions.""" 
        # Larson-Miller parameter approach (simplified) 
        T_max = self.thermal.T_wall_max 
        sigma_max = self.sigma_max 
         
        # Material-specific constants (approximate for Inconel 718) 
        C = 20.0 
         
        # Larson-Miller parameter 
        LMP = T_max * (C + log10(operating_hours + 1e-10)) 
         
        # Stress rupture curve (approximate) 
        sigma_rupture = 1e9 * exp(-LMP / 10000) 
         
        creep_margin = sigma_rupture / sigma_max 
         
        return creep_margin 
     
    def check_structural_limits(self) -> Dict[str, bool]: 
        """Check if structural limits are satisfied.""" 
        limits = { 
            'safety_factor': self.SF_min > 1.5, 
            'buckling': self.compute_buckling_margin() > 2.0, 
            'fatigue': self.compute_fatigue_life(self.sigma_max * 0.1) > 10000 
        } 
         
        return limits 

# ============================================================================= 
# Acoustic Analysis 
# ============================================================================= 

class AcousticAnalyzer: 
    """Acoustic emission analysis for the corrugated nozzle.""" 
     
    def __init__( 
        self,  
        geometry: NozzleContourGenerator, 
        flow_solver: FlowFieldSolver, 
        vortex_analyzer: VortexAnalyzer, 
        shock_analyzer: ShockStructureAnalyzer, 
        observer_distance: float 
    ): 
        self.geometry = geometry 
        self.flow = flow_solver 
        self.vortex = vortex_analyzer 
        self.shock = shock_analyzer 
        self.r_obs = observer_distance 
        self.params = geometry.params 
         
        self._compute_acoustic_field() 
     
    def _compute_acoustic_field(self): 
        """Compute the acoustic emission characteristics.""" 
        # Frequency range for analysis 
        self.frequencies = np.logspace(1, 5, 200)  # 10 Hz to 100 kHz 
         
        # Power spectral density 
        self.psd = np.zeros_like(self.frequencies) 
         
        prop = self.flow.propellant 
        rho_inf = 1.225  # Ambient air density 
        c_inf = 340.0  # Ambient speed of sound 
         
        u_e = self.flow.velocity_exit 
        D_e = 2 * self.params.exit_radius 
         
        # Strouhal number 
        St = self.frequencies * D_e / u_e 
         
        for i, f in enumerate(self.frequencies): 
            # Turbulent mixing noise (Tam & Auriault model simplified) 
            St_i = St[i] 
             
            # Fine-scale similarity spectrum 
            F_s = 4 * St_i / ((1 + St_i**2)**2) 
             
            # Large-scale similarity spectrum   
            G = 2 * St_i**2 / (1 + St_i**4) 
             
            # Combine with amplitude scaling 
            A_0 = (rho_inf**2 * c_inf**4 / self.r_obs**2) * (u_e / c_inf)**7.5 * D_e**2 
             
            self.psd[i] = A_0 * (0.7 * F_s + 0.3 * G) 
         
        # Apply correction for lobe geometry 
        self._apply_lobe_correction() 
     
    def _apply_lobe_correction(self): 
        """Apply corrections for lobe mixing effects on noise.""" 
        p = self.params 
         
        # Frequency shift due to organized vortex structures 
        f_vortex = self.vortex.circulation_exit / (2 * pi * self.vortex.core_radius_exit**2) 
         
        # Low-frequency enhancement from large-scale structures 
        for i, f in enumerate(self.frequencies): 
            if f < f_vortex * 2: 
                # Enhanced low-frequency content 
                self.psd[i] *= 1.5 
            elif f > f_vortex * 10: 
                # Reduced high-frequency content (better mixing) 
                self.psd[i] *= 0.7 * (f_vortex * 10 / f)**0.5 
         

New York General Group 17



Multi-Stage Propulsion System with Variable-Geometry Corrugate Lobe Exhaust Architecture for Enhanced Supersonic Thrust Vectoring and Mixing Efficiency 

        # Shock noise reduction due to distributed shock system 
        shock_reduction = 1 - 0.3 * p.penetration_parameter 
        self.psd *= shock_reduction 
     
    def compute_oaspl(self) -> float: 
        """Compute overall sound pressure level.""" 
        p_ref = PhysicalConstants.REFERENCE_PRESSURE_ACOUSTIC 
         
        # Integrate PSD 
        total_power = np.trapz(self.psd, self.frequencies) 
         
        oaspl = 10 * log10(total_power / p_ref**2) 
         
        return oaspl 
     
    def compute_oaspl_reduction(self) -> float: 
        """Compute OASPL reduction compared to equivalent circular nozzle.""" 
        p = self.params 
         
        # Empirical correlation for lobe noise reduction 
        reduction = 3.0 * p.penetration_parameter / 0.11 
         
        return min(reduction, 5.0)  # Cap at 5 dB 
     
    def compute_peak_frequency(self) -> float: 
        """Compute the peak frequency of the noise spectrum.""" 
        idx = np.argmax(self.psd) 
        return self.frequencies[idx] 
     
    def compute_directivity_pattern( 
        self,  
        angles: np.ndarray 
    ) -> np.ndarray: 
        """Compute the directivity pattern of acoustic emission.""" 
        # Simplified Lighthill-based directivity 
        D = np.zeros_like(angles) 
         
        for i, theta in enumerate(angles): 
            # Convective amplification for jet noise 
            M_c = 0.6 * self.flow.velocity_exit / 340.0 
             
            D[i] = 1 / (1 - M_c * cos(theta))**5 
         
        # Normalize 
        D /= np.max(D) 
         
        return D 

# ============================================================================= 
# Optimization Framework 
# ============================================================================= 

class CorrugationOptimizer: 
    """Optimization framework for corrugated lobe parameters.""" 
     
    def __init__( 
        self, 
        base_parameters: CorrugatedLobeParameters, 
        propellant: PropellantCombination, 
        chamber_pressure: float, 
        ambient_pressure: float, 
        wall_material: MaterialProperties, 
        wall_thickness: float, 
        coolant_properties: Dict[str, float] 
    ): 
        self.base_params = base_parameters 
        self.propellant = propellant 
        self.p_c = chamber_pressure 
        self.p_a = ambient_pressure 
        self.material = wall_material 
        self.t_wall = wall_thickness 
        self.coolant = coolant_properties 
         
        self.optimization_history = [] 
     
    def _evaluate_design(self, x: np.ndarray) -> Dict[str, float]: 
        """Evaluate a design point and return performance metrics.""" 
        # Unpack design variables 
        xi = x[0]  # Corrugation extent ratio 
        A_exit = x[1]  # Exit amplitude 
        beta = x[2]  # Amplitude exponent 
         
        # Create modified parameters 
        params = CorrugatedLobeParameters( 
            throat_radius=self.base_params.throat_radius, 
            throat_radius_of_curvature_upstream=self.base_params.throat_radius_of_curvature_upstream, 
            throat_radius_of_curvature_downstream=self.base_params.throat_radius_of_curvature_downstream, 
            divergent_half_angle_initial=self.base_params.divergent_half_angle_initial, 
            divergent_half_angle_exit=self.base_params.divergent_half_angle_exit, 
            area_ratio=self.base_params.area_ratio, 
            divergent_length=self.base_params.divergent_length, 
            number_of_lobes=self.base_params.number_of_lobes, 
            corrugation_extent_ratio=xi, 
            exit_amplitude=A_exit, 
            amplitude_exponent=beta, 
            lobe_phase_angle=self.base_params.lobe_phase_angle 
        ) 
         
        # Build analysis chain 
        try: 
            geometry = NozzleContourGenerator(params) 
            flow = FlowFieldSolver(geometry, self.propellant, self.p_c, self.p_a) 
            vortex = VortexAnalyzer(geometry, flow) 
            shock = ShockStructureAnalyzer(geometry, flow) 
            boundary_layer = BoundaryLayerSolver(geometry, flow) 
            thermal = ThermalAnalyzer( 
                geometry, flow, self.material, self.t_wall, self.coolant 
            ) 
            structural = StructuralAnalyzer( 
                geometry, flow, thermal, self.material, self.t_wall 
            ) 
             
            # Compute metrics 
            metrics = { 
                'thrust_coefficient': flow.compute_thrust_coefficient(), 
                'specific_impulse': flow.compute_specific_impulse(), 
                'nozzle_efficiency': flow.compute_nozzle_efficiency(), 
                'mixing_length': vortex.compute_mixing_length(), 
                'circulation_exit': vortex.circulation_exit, 
                'shock_loss': shock.compute_shock_efficiency_penalty(), 
                'bl_loss': boundary_layer.compute_boundary_layer_loss(), 
                'T_wall_max': thermal.T_wall_max, 
                'safety_factor_min': structural.SF_min, 
                'separated': boundary_layer.check_separation()[0] 
            } 
             
        except Exception as e: 
            # Return penalty values for failed evaluations 
            metrics = { 
                'thrust_coefficient': 0.0, 
                'specific_impulse': 0.0, 
                'nozzle_efficiency': 0.0, 
                'mixing_length': 1e10, 
                'circulation_exit': 0.0, 
                'shock_loss': 1.0, 
                'bl_loss': 1.0, 
                'T_wall_max': 1e10, 
                'safety_factor_min': 0.0, 
                'separated': True 
            } 
         
        return metrics 
     
    def _objective_function(self, x: np.ndarray) -> float: 
        """Compute objective function for optimization.""" 
        metrics = self._evaluate_design(x) 
         
        # Multi-objective formulation with weights 
        w_efficiency = 0.3 
        w_mixing = 0.4 
        w_shock = 0.2 
        w_thermal = 0.1 
         
        # Normalize metrics 
        efficiency_term = metrics['nozzle_efficiency'] 
        mixing_term = 1.0 / (1 + metrics['mixing_length'] / 0.5) 
        shock_term = 1.0 - metrics['shock_loss'] 
        thermal_term = 1.0 / (1 + max(0, metrics['T_wall_max'] - 800) / 200) 
         
        # Constraints as penalties 
        penalty = 0.0 
         
        if metrics['separated']: 
            penalty += 10.0 
         
        if metrics['safety_factor_min'] < 1.5: 
            penalty += 5.0 * (1.5 - metrics['safety_factor_min']) 
         
        if metrics['T_wall_max'] > self.material.max_service_temperature: 
            penalty += 5.0 
         
        # Objective (maximize, so negate for minimization) 
        obj = -( 
            w_efficiency * efficiency_term + 
            w_mixing * mixing_term + 
            w_shock * shock_term + 
            w_thermal * thermal_term 
        ) + penalty 
         
        self.optimization_history.append({ 
            'x': x.copy(), 
            'metrics': metrics, 

            'objective': obj 
        }) 
         
        return obj 
     
    def optimize( 
        self, 
        xi_bounds: Tuple[float, float] = (0.3, 0.8), 
        amplitude_bounds: Tuple[float, float] = (0.005, 0.05), 
        beta_bounds: Tuple[float, float] = (0.5, 2.0), 
        n_iterations: int = 100 
    ) -> Dict[str, Any]: 
        """Run optimization to find optimal corrugation parameters.""" 
         
        bounds = [xi_bounds, amplitude_bounds, beta_bounds] 
         
        # Initial guess at center of bounds 
        x0 = np.array([ 
            (xi_bounds[0] + xi_bounds[1]) / 2, 
            (amplitude_bounds[0] + amplitude_bounds[1]) / 2, 
            (beta_bounds[0] + beta_bounds[1]) / 2 
        ]) 
         
        # Run optimization 
        result = minimize( 
            self._objective_function, 
            x0, 
            method='L-BFGS-B', 
            bounds=bounds, 
            options={'maxiter': n_iterations, 'disp': True} 
        ) 
         
        # Extract optimal design 
        x_opt = result.x 
        metrics_opt = self._evaluate_design(x_opt) 
         
        return { 
            'optimal_xi': x_opt[0], 
            'optimal_amplitude': x_opt[1], 
            'optimal_beta': x_opt[2], 
            'metrics': metrics_opt, 
            'success': result.success, 
            'message': result.message 
        } 
     
    def parametric_study( 
        self, 
        xi_range: np.ndarray, 
        amplitude_range: np.ndarray 
    ) -> Dict[str, np.ndarray]: 
        """Perform parametric study over corrugation parameters.""" 
         
        n_xi = len(xi_range) 
        n_amp = len(amplitude_range) 
         
        results = { 
            'xi': xi_range, 
            'amplitude': amplitude_range, 
            'efficiency': np.zeros((n_xi, n_amp)), 
            'mixing_length': np.zeros((n_xi, n_amp)), 
            'T_wall_max': np.zeros((n_xi, n_amp)), 
            'SF_min': np.zeros((n_xi, n_amp)) 
        } 
         
        for i, xi in enumerate(xi_range): 
            for j, amp in enumerate(amplitude_range): 
                x = np.array([xi, amp, 1.2])  # Fixed beta 
                metrics = self._evaluate_design(x) 
                 
                results['efficiency'][i, j] = metrics['nozzle_efficiency'] 
                results['mixing_length'][i, j] = metrics['mixing_length'] 
                results['T_wall_max'][i, j] = metrics['T_wall_max'] 
                results['SF_min'][i, j] = metrics['safety_factor_min'] 
         
        return results 

# ============================================================================= 
# Complete System Integration 
# ============================================================================= 

class CorrugatedLobeNozzleSystem: 
    """Complete integrated system for corrugated lobe nozzle analysis.""" 
     
    def __init__( 
        self, 
        parameters: CorrugatedLobeParameters, 
        propellant: PropellantCombination, 
        chamber_pressure: float, 
        ambient_pressure: float, 
        wall_material: MaterialProperties, 
        wall_thickness: float, 
        coolant_properties: Dict[str, float] 
    ): 
        self.params = parameters 
        self.propellant = propellant 
        self.p_c = chamber_pressure 
        self.p_a = ambient_pressure 
        self.material = wall_material 
        self.t_wall = wall_thickness 
        self.coolant = coolant_properties 
         
        self._build_analysis_chain() 
     
    def _build_analysis_chain(self): 
        """Build the complete analysis chain.""" 
        print("Building geometry...") 
        self.geometry = NozzleContourGenerator(self.params) 
         
        print("Solving flow field...") 
        self.flow = FlowFieldSolver( 
            self.geometry, self.propellant, self.p_c, self.p_a 
        ) 
         
        print("Analyzing vortex generation...") 
        self.vortex = VortexAnalyzer(self.geometry, self.flow) 
         
        print("Analyzing shock structure...") 
        self.shock = ShockStructureAnalyzer(self.geometry, self.flow) 
         
        print("Solving boundary layer...") 
        self.boundary_layer = BoundaryLayerSolver(self.geometry, self.flow) 
         
        print("Performing thermal analysis...") 
        self.thermal = ThermalAnalyzer( 
            self.geometry, self.flow, self.material,  
            self.t_wall, self.coolant 
        ) 
         
        print("Performing structural analysis...") 
        self.structural = StructuralAnalyzer( 
            self.geometry, self.flow, self.thermal, 
            self.material, self.t_wall 
        ) 
         
        print("Analyzing acoustics...") 
        self.acoustic = AcousticAnalyzer( 
            self.geometry, self.flow, self.vortex, 
            self.shock, observer_distance=100.0 
        ) 
         
        print("Analysis complete.") 
     
    def get_performance_summary(self) -> Dict[str, Any]: 
        """Generate comprehensive performance summary.""" 
        summary = { 
            'geometry': { 
                'throat_radius': self.params.throat_radius, 
                'exit_radius': self.params.exit_radius, 
                'area_ratio': self.params.area_ratio, 
                'divergent_length': self.params.divergent_length, 
                'number_of_lobes': self.params.number_of_lobes, 
                'corrugation_extent_ratio': self.params.corrugation_extent_ratio, 
                'exit_amplitude': self.params.exit_amplitude, 
                'penetration_parameter': self.params.penetration_parameter 
            }, 
            'propulsion': { 
                'thrust': self.flow.compute_thrust(), 
                'thrust_coefficient': self.flow.compute_thrust_coefficient(), 
                'specific_impulse': self.flow.compute_specific_impulse(), 
                'mass_flow_rate': self.flow.compute_mass_flow_rate(), 
                'nozzle_efficiency': self.flow.compute_nozzle_efficiency(), 
                'exit_mach': self.flow.mach_exit, 
                'exit_pressure': self.flow.pressure_exit, 
                'exit_velocity': self.flow.velocity_exit 
            }, 
            'mixing': { 
                'exit_circulation': self.vortex.circulation_exit, 
                'core_radius_exit': self.vortex.core_radius_exit, 
                'mixing_length': self.vortex.compute_mixing_length(), 
                'mixed_fraction_5D': self.vortex.compute_mixed_mass_fraction( 
                    5 * 2 * self.params.exit_radius 
                ) 
            }, 
            'losses': { 
                'shock_loss': self.shock.compute_shock_efficiency_penalty(), 
                'boundary_layer_loss': self.boundary_layer.compute_boundary_layer_loss(), 
                'total_pressure_loss': self.shock.compute_total_pressure_loss() 
            }, 
            'thermal': { 
                'max_wall_temperature': self.thermal.T_wall_max, 
                'max_heat_flux': self.thermal.heat_flux_max, 
                'total_heat_load': self.thermal.compute_total_heat_load(), 

New York General Group 18



Multi-Stage Propulsion System with Variable-Geometry Corrugate Lobe Exhaust Architecture for Enhanced Supersonic Thrust Vectoring and Mixing Efficiency 

                'coolant_temp_rise': self.thermal.compute_coolant_temperature_rise(), 
                'thermal_effectiveness': self.thermal.compute_thermal_effectiveness() 
            }, 
            'structural': { 
                'max_von_mises_stress': self.structural.sigma_max, 
                'min_safety_factor': self.structural.SF_min, 
                'buckling_margin': self.structural.compute_buckling_margin() 
            }, 
            'acoustic': { 
                'oaspl': self.acoustic.compute_oaspl(), 
                'oaspl_reduction': self.acoustic.compute_oaspl_reduction(), 
                'peak_frequency': self.acoustic.compute_peak_frequency() 
            }, 
            'validation': { 
                'flow_separation': self.boundary_layer.check_separation()[0], 
                'thermal_limits_satisfied': all(self.thermal.check_thermal_limits().values()), 
                'structural_limits_satisfied': all(self.structural.check_structural_limits().values()) 
            } 
        } 
         
        return summary 
     
    def generate_mesh_export( 
        self, 
        filename: str, 
        n_axial: int = 200, 
        n_circumferential: int = 180 
    ): 
        """Export surface mesh for external analysis tools.""" 
        X, Y, Z = self.geometry.generate_surface_mesh(n_axial, n_circumferential) 
         
        # Export as STL or CSV format 
        if filename.endswith('.csv'): 
            with open(filename, 'w') as f: 
                f.write('x,y,z\n') 
                for i in range(n_axial): 
                    for j in range(n_circumferential): 
                        f.write(f'{X[i,j]},{Y[i,j]},{Z[i,j]}\n') 
         
        print(f"Mesh exported to {filename}") 
     
    def plot_geometry(self, show: bool = True) -> plt.Figure: 
        """Generate 3D visualization of the nozzle geometry.""" 
        fig = plt.figure(figsize=(14, 10)) 
        ax = fig.add_subplot(111, projection='3d') 
         
        X, Y, Z = self.geometry.generate_surface_mesh(100, 90) 
         
        ax.plot_surface(X, Y, Z, cmap='viridis', alpha=0.8) 
         
        ax.set_xlabel('X (m)') 
        ax.set_ylabel('Y (m)') 
        ax.set_zlabel('Z (m)') 
        ax.set_title('Corrugated Lobe Nozzle Geometry') 
         
        if show: 
            plt.show() 
         
        return fig 
     
    def plot_flow_properties(self, show: bool = True) -> plt.Figure: 
        """Plot axial distribution of flow properties.""" 
        fig, axes = plt.subplots(2, 2, figsize=(12, 10)) 
         
        z = self.flow.z_stations 
         
        axes[0, 0].plot(z * 1000, self.flow.mach, 'b-', linewidth=2) 
        axes[0, 0].set_xlabel('Axial Position (mm)') 
        axes[0, 0].set_ylabel('Mach Number') 
        axes[0, 0].set_title('Mach Number Distribution') 
        axes[0, 0].grid(True) 
        axes[0, 0].axvline(x=self.params.corrugation_start_position * 1000,  
                          color='r', linestyle='--', label='Corrugation Start') 
        axes[0, 0].legend() 
         
        axes[0, 1].plot(z * 1000, self.flow.pressure / 1e6, 'r-', linewidth=2) 
        axes[0, 1].set_xlabel('Axial Position (mm)') 
        axes[0, 1].set_ylabel('Pressure (MPa)') 
        axes[0, 1].set_title('Static Pressure Distribution') 
        axes[0, 1].grid(True) 
         
        axes[1, 0].plot(z * 1000, self.flow.temperature, 'g-', linewidth=2) 
        axes[1, 0].set_xlabel('Axial Position (mm)') 
        axes[1, 0].set_ylabel('Temperature (K)') 
        axes[1, 0].set_title('Static Temperature Distribution') 
        axes[1, 0].grid(True) 
         
        axes[1, 1].plot(z * 1000, self.flow.velocity, 'm-', linewidth=2) 
        axes[1, 1].set_xlabel('Axial Position (mm)') 
        axes[1, 1].set_ylabel('Velocity (m/s)') 
        axes[1, 1].set_title('Flow Velocity Distribution') 
        axes[1, 1].grid(True) 
         
        plt.tight_layout() 
         
        if show: 
            plt.show() 
         
        return fig 
     
    def plot_thermal_field(self, show: bool = True) -> plt.Figure: 
        """Plot thermal field visualization.""" 
        fig, axes = plt.subplots(1, 2, figsize=(14, 5)) 
         
        z_plot = self.thermal.z_thermal * 1000 
        theta_plot = np.degrees(self.thermal.theta_thermal) 
         
        im1 = axes[0].contourf(z_plot, theta_plot, self.thermal.T_wall_hot.T,  
                                levels=20, cmap='hot') 
        axes[0].set_xlabel('Axial Position (mm)') 
        axes[0].set_ylabel('Circumferential Angle (degrees)') 
        axes[0].set_title('Hot-Side Wall Temperature (K)') 
        plt.colorbar(im1, ax=axes[0]) 
         
        im2 = axes[1].contourf(z_plot, theta_plot, self.thermal.heat_flux.T / 1e6, 
                                levels=20, cmap='YlOrRd') 
        axes[1].set_xlabel('Axial Position (mm)') 
        axes[1].set_ylabel('Circumferential Angle (degrees)') 
        axes[1].set_title('Heat Flux (MW/m²)') 
        plt.colorbar(im2, ax=axes[1]) 
         
        plt.tight_layout() 
         
        if show: 
            plt.show() 
         
        return fig 
     
    def plot_vortex_development(self, show: bool = True) -> plt.Figure: 
        """Plot vortex strength development through corrugated section.""" 
        fig, axes = plt.subplots(1, 2, figsize=(12, 5)) 
         
        z_plot = self.vortex.z_vortex * 1000 
         
        axes[0].plot(z_plot, self.vortex.circulation, 'b-', linewidth=2) 
        axes[0].set_xlabel('Axial Position (mm)') 
        axes[0].set_ylabel('Circulation (m²/s)') 
        axes[0].set_title('Vortex Circulation Development') 
        axes[0].grid(True) 
         
        axes[1].plot(z_plot, self.vortex.core_radius * 1000, 'r-', linewidth=2) 
        axes[1].set_xlabel('Axial Position (mm)') 
        axes[1].set_ylabel('Core Radius (mm)') 
        axes[1].set_title('Vortex Core Radius') 
        axes[1].grid(True) 
         
        plt.tight_layout() 
         
        if show: 
            plt.show() 
         
        return fig 
     
    def plot_acoustic_spectrum(self, show: bool = True) -> plt.Figure: 
        """Plot acoustic power spectrum.""" 
        fig, ax = plt.subplots(figsize=(10, 6)) 
         
        ax.semilogx(self.acoustic.frequencies,  
                    10 * np.log10(self.acoustic.psd / PhysicalConstants.REFERENCE_PRESSURE_ACOUSTIC**2), 
                    'b-', linewidth=2) 
        ax.set_xlabel('Frequency (Hz)') 
        ax.set_ylabel('Power Spectral Density (dB/Hz)') 
        ax.set_title('Acoustic Power Spectrum') 
        ax.grid(True, which='both') 
        ax.set_xlim([10, 100000]) 
         
        if show: 
            plt.show() 
         
        return fig 
     
    def generate_report(self, filename: str): 
        """Generate comprehensive analysis report.""" 
        summary = self.get_performance_summary() 
         
        with open(filename, 'w') as f: 
            f.write("=" * 80 + "\n") 
            f.write("CORRUGATED LOBE NOZZLE ANALYSIS REPORT\n") 
            f.write("=" * 80 + "\n\n") 
             
            for category, data in summary.items(): 
                f.write(f"\n{category.upper()}\n") 
                f.write("-" * 40 + "\n") 

                 
                if isinstance(data, dict): 
                    for key, value in data.items(): 
                        if isinstance(value, float): 
                            f.write(f"  {key}: {value:.6g}\n") 
                        else: 
                            f.write(f"  {key}: {value}\n") 
                else: 
                    f.write(f"  {data}\n") 
             
            f.write("\n" + "=" * 80 + "\n") 
            f.write("END OF REPORT\n") 
            f.write("=" * 80 + "\n") 
         
        print(f"Report generated: {filename}") 

# ============================================================================= 
# Main Execution and Example Usage 
# ============================================================================= 

def create_representative_implementation(): 
    """Create the representative implementation described in the patent.""" 
     
    # Define geometry parameters (representative implementation) 
    params = CorrugatedLobeParameters( 
        throat_radius=0.045,  # 45 mm 
        throat_radius_of_curvature_upstream=0.04,  # 40 mm 
        throat_radius_of_curvature_downstream=0.025,  # 25 mm 
        divergent_half_angle_initial=0.2618,  # 15 degrees 
        divergent_half_angle_exit=0.0873,  # 5 degrees 
        area_ratio=40.0, 
        divergent_length=0.35,  # 350 mm 
        number_of_lobes=8, 
        corrugation_extent_ratio=0.6,  # 60% - the optimal value 
        exit_amplitude=0.018,  # 18 mm 
        amplitude_exponent=1.2, 
        lobe_phase_angle=0.0 
    ) 
     
    # Select propellant 
    propellant = PropellantDatabase.LOX_RP1 
     
    # Operating conditions 
    chamber_pressure = 100e5  # 100 bar 
    ambient_pressure = 1e5  # 1 bar (sea level) 
     
    # Wall material 
    wall_material = MaterialDatabase.INCONEL_718 
    wall_thickness = 0.002  # 2 mm 
     
    # Coolant properties (RP-1 fuel as coolant) 
    coolant_properties = { 
        'inlet_temperature': 300.0,  # K 
        'mass_flow_rate': 5.0,  # kg/s 
        'specific_heat': 2000.0,  # J/(kg·K) 
        'density': 800.0,  # kg/m³ 
        'velocity': 15.0,  # m/s 
        'thermal_conductivity': 0.15,  # W/(m·K) 
        'hydraulic_diameter': 0.003,  # 3 mm 
        'reynolds_number': 50000, 
        'prandtl_number': 15.0, 
        'friction_factor': 0.02 
    } 
     
    return params, propellant, chamber_pressure, ambient_pressure, wall_material, wall_thickness, coolant_properties 

def run_full_analysis(): 
    """Run complete analysis of the representative implementation.""" 
     
    print("=" * 80) 
    print("CORRUGATED LOBE PROPULSION SYSTEM - FULL ANALYSIS") 
    print("=" * 80) 
     
    # Create representative implementation 
    (params, propellant, p_c, p_a, material,  
     t_wall, coolant) = create_representative_implementation() 
     
    # Build complete system 
    system = CorrugatedLobeNozzleSystem( 
        params, propellant, p_c, p_a, material, t_wall, coolant 
    ) 
     
    # Get performance summary 
    summary = system.get_performance_summary() 
     
    # Print key results 
    print("\n" + "=" * 60) 
    print("PERFORMANCE SUMMARY") 
    print("=" * 60) 
     
    print(f"\nPropulsion Performance:") 
    print(f"  Thrust: {summary['propulsion']['thrust']/1000:.2f} kN") 
    print(f"  Specific Impulse: {summary['propulsion']['specific_impulse']:.1f} s") 
    print(f"  Thrust Coefficient: {summary['propulsion']['thrust_coefficient']:.4f}") 
    print(f"  Nozzle Efficiency: {summary['propulsion']['nozzle_efficiency']*100:.2f}%") 
     
    print(f"\nMixing Enhancement:") 
    print(f"  Exit Circulation: {summary['mixing']['exit_circulation']:.2f} m²/s") 
    print(f"  Mixing Length: {summary['mixing']['mixing_length']*1000:.1f} mm") 
    print(f"  Mixed Fraction at 5D: {summary['mixing']['mixed_fraction_5D']*100:.1f}%") 
     
    print(f"\nLoss Analysis:") 
    print(f"  Shock Loss: {summary['losses']['shock_loss']*100:.2f}%") 
    print(f"  Boundary Layer Loss: {summary['losses']['boundary_layer_loss']*100:.2f}%") 
     
    print(f"\nThermal Performance:") 
    print(f"  Maximum Wall Temperature: {summary['thermal']['max_wall_temperature']:.0f} K") 
    print(f"  Maximum Heat Flux: {summary['thermal']['max_heat_flux']/1e6:.2f} MW/m²") 
    print(f"  Total Heat Load: {summary['thermal']['total_heat_load']/1e6:.2f} MW") 
     
    print(f"\nStructural Performance:") 
    print(f"  Maximum Von Mises Stress: {summary['structural']['max_von_mises_stress']/1e6:.1f} MPa") 
    print(f"  Minimum Safety Factor: {summary['structural']['min_safety_factor']:.2f}") 
    print(f"  Buckling Margin: {summary['structural']['buckling_margin']:.1f}") 
     
    print(f"\nAcoustic Performance:") 
    print(f"  Overall SPL: {summary['acoustic']['oaspl']:.1f} dB") 
    print(f"  OASPL Reduction: {summary['acoustic']['oaspl_reduction']:.1f} dB") 
     
    print(f"\nValidation:") 
    print(f"  Flow Separation: {'Yes' if summary['validation']['flow_separation'] else 'No'}") 
    print(f"  Thermal Limits Satisfied: {'Yes' if summary['validation']['thermal_limits_satisfied'] else 'No'}") 
    print(f"  Structural Limits Satisfied: {'Yes' if summary['validation']['structural_limits_satisfied'] else 'No'}") 
     
    return system 

def run_optimization_study(): 
    """Run optimization study to verify 60% extent ratio optimality.""" 
     
    print("\n" + "=" * 80) 
    print("OPTIMIZATION STUDY - VERIFYING 60% CORRUGATION EXTENT OPTIMALITY") 
    print("=" * 80) 
     
    # Create base parameters 
    (params, propellant, p_c, p_a, material, 
     t_wall, coolant) = create_representative_implementation() 
     
    # Create optimizer 
    optimizer = CorrugationOptimizer( 
        params, propellant, p_c, p_a, material, t_wall, coolant 
    ) 
     
    # Parametric study 
    xi_range = np.linspace(0.3, 0.8, 11) 
    amp_range = np.array([0.015, 0.018, 0.021]) 
     
    print("\nRunning parametric study...") 
    results = optimizer.parametric_study(xi_range, amp_range) 
     
    # Find optimal extent ratio 
    efficiency_vs_xi = results['efficiency'][:, 1]  # At nominal amplitude 
    mixing_vs_xi = 1.0 / (1 + results['mixing_length'][:, 1] / 0.5) 
     
    combined_metric = 0.5 * efficiency_vs_xi + 0.5 * mixing_vs_xi 
    optimal_idx = np.argmax(combined_metric) 
    optimal_xi = xi_range[optimal_idx] 
     
    print(f"\nParametric Study Results:") 
    print(f"  Optimal Corrugation Extent Ratio: {optimal_xi*100:.1f}%") 
    print(f"  Patent Claim: 60%") 
    print(f"  Agreement: {'Yes' if abs(optimal_xi - 0.6) < 0.05 else 'No'}") 
     
    # Run full optimization 
    print("\nRunning gradient-based optimization...") 
    opt_result = optimizer.optimize(n_iterations=50) 
     
    print(f"\nOptimization Results:") 
    print(f"  Optimal Corrugation Extent: {opt_result['optimal_xi']*100:.1f}%") 
    print(f"  Optimal Exit Amplitude: {opt_result['optimal_amplitude']*1000:.1f} mm") 
    print(f"  Optimal Amplitude Exponent: {opt_result['optimal_beta']:.2f}") 
    print(f"  Optimization Success: {opt_result['success']}") 
     
    return optimizer, results 

def run_comparative_analysis(): 
    """Compare corrugated lobe nozzle to equivalent conventional nozzle.""" 
     
    print("\n" + "=" * 80) 
    print("COMPARATIVE ANALYSIS - CORRUGATED VS CONVENTIONAL NOZZLE") 

New York General Group 19



Multi-Stage Propulsion System with Variable-Geometry Corrugate Lobe Exhaust Architecture for Enhanced Supersonic Thrust Vectoring and Mixing Efficiency 

    print("=" * 80) 
     
    # Create corrugated lobe nozzle 
    (params_corr, propellant, p_c, p_a, material, 
     t_wall, coolant) = create_representative_implementation() 
     
    system_corr = CorrugatedLobeNozzleSystem( 
        params_corr, propellant, p_c, p_a, material, t_wall, coolant 
    ) 
     
    # Create equivalent conventional (circular) nozzle 
    params_conv = CorrugatedLobeParameters( 
        throat_radius=params_corr.throat_radius, 
        throat_radius_of_curvature_upstream=params_corr.throat_radius_of_curvature_upstream, 
        throat_radius_of_curvature_downstream=params_corr.throat_radius_of_curvature_downstream, 
        divergent_half_angle_initial=params_corr.divergent_half_angle_initial, 
        divergent_half_angle_exit=params_corr.divergent_half_angle_exit, 
        area_ratio=params_corr.area_ratio, 
        divergent_length=params_corr.divergent_length, 
        number_of_lobes=8, 
        corrugation_extent_ratio=0.0,  # No corrugation 
        exit_amplitude=0.0,  # No amplitude 
        amplitude_exponent=1.0, 
        lobe_phase_angle=0.0 
    ) 
     
    system_conv = CorrugatedLobeNozzleSystem( 
        params_conv, propellant, p_c, p_a, material, t_wall, coolant 
    ) 
     
    # Compare performance 
    summary_corr = system_corr.get_performance_summary() 
    summary_conv = system_conv.get_performance_summary() 
     
    print("\nComparison Results:") 
    print("-" * 60) 
    print(f"{'Metric':<30} {'Conventional':>12} {'Corrugated':>12} {'Delta':>10}") 
    print("-" * 60) 
     
    # Propulsion comparison 
    isp_conv = summary_conv['propulsion']['specific_impulse'] 
    isp_corr = summary_corr['propulsion']['specific_impulse'] 
    print(f"{'Specific Impulse (s)':<30} {isp_conv:>12.1f} {isp_corr:>12.1f} {isp_corr-isp_conv:>+10.1f}") 
     
    eta_conv = summary_conv['propulsion']['nozzle_efficiency'] * 100 
    eta_corr = summary_corr['propulsion']['nozzle_efficiency'] * 100 
    print(f"{'Nozzle Efficiency (%)':<30} {eta_conv:>12.2f} {eta_corr:>12.2f} {eta_corr-eta_conv:>+10.2f}") 
     
    # Mixing comparison 
    mix_conv = summary_conv['mixing']['mixing_length'] * 1000 
    mix_corr = summary_corr['mixing']['mixing_length'] * 1000 
    print(f"{'Mixing Length (mm)':<30} {mix_conv:>12.1f} {mix_corr:>12.1f} {mix_corr-mix_conv:>+10.1f}") 
     
    # Acoustic comparison 
    oaspl_conv = summary_conv['acoustic']['oaspl'] 
    oaspl_corr = summary_corr['acoustic']['oaspl'] 
    print(f"{'OASPL (dB)':<30} {oaspl_conv:>12.1f} {oaspl_corr:>12.1f} {oaspl_corr-oaspl_conv:>+10.1f}") 
     
    print("-" * 60) 
     
    print("\nBenefits of Corrugated Lobe Design:") 
    print(f"  Mixing Length Reduction: {(1 - mix_corr/mix_conv)*100:.1f}%") 
    print(f"  Noise Reduction: {oaspl_conv - oaspl_corr:.1f} dB") 
    print(f"  Efficiency Penalty: {eta_conv - eta_corr:.2f}%") 
     
    return system_corr, system_conv 

if __name__ == "__main__": 
    # Run comprehensive analysis 
    system = run_full_analysis() 
     
    # Run optimization study 
    optimizer, opt_results = run_optimization_study() 
     
    # Run comparative analysis 
    system_corr, system_conv = run_comparative_analysis() 
     
    # Generate visualizations 
    print("\nGenerating visualizations...") 
    system.plot_geometry(show=False) 
    plt.savefig('nozzle_geometry.png', dpi=150, bbox_inches='tight') 
     
    system.plot_flow_properties(show=False) 
    plt.savefig('flow_properties.png', dpi=150, bbox_inches='tight') 
     
    system.plot_thermal_field(show=False) 
    plt.savefig('thermal_field.png', dpi=150, bbox_inches='tight') 
     
    system.plot_vortex_development(show=False) 
    plt.savefig('vortex_development.png', dpi=150, bbox_inches='tight') 
     
    system.plot_acoustic_spectrum(show=False) 
    plt.savefig('acoustic_spectrum.png', dpi=150, bbox_inches='tight') 
     
    # Generate report 
    system.generate_report('analysis_report.txt') 
     
    # Export mesh 
    system.generate_mesh_export('nozzle_mesh.csv') 
     
    print("\n" + "=" * 80) 
    print("ANALYSIS COMPLETE") 
    print("=" * 80) 
    print("\nOutput files generated:") 
    print("  - nozzle_geometry.png") 
    print("  - flow_properties.png") 
    print("  - thermal_field.png") 
    print("  - vortex_development.png") 
    print("  - acoustic_spectrum.png") 
    print("  - analysis_report.txt") 
    print("  - nozzle_mesh.csv") 
``` 

A Reduced-Order Numerical Investigation of a
Multi-Stage Propulsion System with Variable-

Geometry Corrugated Lobe Exhaust for Supersonic
Thrust Vectoring and Enhanced Mixing

Yu Murakami, New York General Group
January 1, 2026

Abstract

A reduced-order computational experiment is presented for a multi-stage rocket
propulsion system employing a variable-geometry corrugated lobe exhaust
architecture. The exhaust design introduces controlled three-dimensional flow
features in the supersonic divergent section of the nozzle, generating streamwise
vorticity for enhanced jet mixing and enabling thrust vectoring through
asymmetric geometric actuation. The model couples quasi-one-dimensional
compressible nozzle flow with phenomenological representations of corrugation-
induced shock losses, vortex generation, and jet spreading. Parametric sweeps of
corrugation extent are performed for representative sea-level and near-vacuum
operating stages. Results demonstrate a clear trade-off between thrust efficiency
and mixing enhancement, with intermediate corrugation extents yielding optimal
combined performance. Thrust vectoring authority exceeding 8–10 degrees is
shown to be achievable without mechanical gimbaling. The study establishes a
physically consistent framework for early-stage design and performance
assessment of corrugated-lobe supersonic exhaust systems.

Keywords: Supersonic nozzle, thrust vectoring, corrugated lobe exhaust,
streamwise vorticity, jet mixing, reduced-order modeling, multi-stage propulsion

1. Introduction

Advanced propulsion systems increasingly seek non-mechanical solutions for
thrust vectoring and plume control in order to reduce mass, complexity, and
reliability risks associated with traditional gimbaled nozzles [1,2]. Corrugated
lobe exhaust geometries—well studied in subsonic and transonic mixing
applications—have recently gained attention for potential extension into
supersonic rocket exhaust flows [3–5].

In a corrugated lobe exhaust, circumferential variations in wall geometry induce
pressure gradients that generate counter-rotating streamwise vortices. These
vortices enhance plume entrainment, accelerate jet mixing, and redistribute
momentum within the exhaust core [6,7]. When combined with variable-
geometry actuation, such as asymmetric exposure of corrugated sections, the
exhaust can produce controllable thrust vectoring without nozzle articulation
[8,9].

The present work develops a reduced-order numerical model to investigate these
effects in a multi-stage rocket propulsion context. The objective is to provide a
physically grounded and computationally efficient framework suitable for
conceptual design and parametric trade studies prior to high-fidelity CFD or
experimental testing [10].

2. Physical Model and Assumptions

2.1 Flow Regime

The exhaust flow is assumed to be:

・Steady,

・Compressible,

・Calorically perfect with constant specific heat ratio,

・Fully choked at the throat.

These assumptions are standard in preliminary nozzle performance analysis and
reduced-order propulsion modeling [11,12].

2.2 Corrugated Lobe Geometry

The corrugated lobe section is located in the divergent portion of the nozzle and
is characterized by:

Mean exit radius ,
Corrugation amplitude ,
Number of lobes N,
Corrugation extent ratio

,

re
Ae

ξ =
Lc
Ld

New York General Group 20

Multi-Stage Propulsion System with Variable-Geometry Corrugate Lobe Exhaust Architecture for Enhanced Supersonic Thrust Vectoring and Mixing Efficiency

where is the corrugated length and is the total divergent length.

The corrugation amplitude increases linearly from zero at the initiation point to
its maximum value at the exit, consistent with established mixer-lobe geometries
[6,13].

2.3 Modeling Philosophy

The model intentionally avoids direct numerical resolution of shocks or
turbulence. Instead, the cumulative effects of:

・Oblique shock interactions,

・Three-dimensional viscous dissipation,

・Streamwise vortex formation,

are incorporated through calibrated phenomenological closures. This approach is
consistent with reduced-order propulsion modeling practices [10,14].

3. Mathematical Formulation

3.1 Baseline Nozzle Flow

The exit Mach number is obtained from the isentropic area–Mach relation [11]:

.

The thrust is computed using the classical momentum-pressure balance:

.

3.2 Corrugation-Induced Total Pressure Loss

The cumulative total-pressure loss across the corrugated section is modeled as:

,

where \delta is the effective wall deflection angle and is the mean Mach
number over the corrugated region. Quadratic dependence on reflects the
increasing frequency of shock interactions and three-dimensional boundary-layer
growth with corrugation length [15,16].

The effective exit velocity is reduced according to:

.

3.3 Streamwise Vorticity and Mixing Proxy

Circumferential pressure gradients produce streamwise circulation estimated as
[6,7]:

.

A non-dimensional vortex strength parameter is defined:

.

The mixing efficiency proxy is modeled as:

,

which captures the observed exponential approach to complete mixing in vortex-
dominated shear flows [17].

3.4 Thrust Vectoring by Asymmetric Geometry

Asymmetric corrugation exposure generates lateral momentum imbalance. The
thrust vector angle is approximated by:

,

where a is a non-dimensional asymmetry command. The angle is limited
to ensure physical realism and structural feasibility [8,18].

4. Simulation Setup

Two representative propulsion stages are analyzed:

The corrugation extent ratio \xi is swept from 0 to 0.9.

5. Results

5.1 Thrust Performance

Thrust decreases monotonically with increasing corrugation extent due to
cumulative shock and viscous losses, consistent with prior studies of non-
axisymmetric supersonic nozzles [15,19].

5.2 Mixing Enhancement

The mixing efficiency proxy increases with corrugation extent as stronger
streamwise vortices are generated. At moderate corrugation lengths, significant
plume spreading is achieved with minimal thrust penalty [6,7].

5.3 Trade-Off Behavior

A combined performance metric balancing mixing enhancement against total-
pressure loss exhibits a clear interior optimum at intermediate corrugation
extents. This supports the design principle of partial, rather than full-length,
corrugation [10].

5.4 Thrust Vectoring Capability

Asymmetric corrugation exposure produces thrust vector angles approaching 10
degrees without mechanical gimbaling. The predicted lateral force levels are
comparable to those achieved by fluidic and aerodynamic thrust vectoring
concepts [2,8].

5.5. Detailed Results

For detailed results, see Appendix 2.

6. Discussion

The results demonstrate that corrugated lobe exhaust architectures can
simultaneously enhance plume mixing and provide thrust vectoring authority
with modest efficiency penalties. The emergence of an optimal corrugation extent
highlights the importance of balancing vortex generation against cumulative
losses in supersonic flows.

The reduced-order nature of the model makes it well suited for preliminary
design, control studies, and parametric optimization prior to high-fidelity analysis
[14,20].

7. Conclusions

A reduced-order numerical experiment has been developed to evaluate variable-
geometry corrugated lobe exhausts in multi-stage supersonic propulsion systems.
The study demonstrates:

・Enhanced jet mixing via streamwise vorticity,

・Effective thrust vectoring without mechanical gimbaling,

・Optimal performance at intermediate corrugation extents.

The framework provides a physically consistent basis for conceptual design and
future experimental and CFD investigations.

8. References

1 Sutton, G. P., and Biblarz, O., Rocket Propulsion Elements, 9th ed., Wiley,
2017.
2 Anderson, J. D., Modern Compressible Flow, 3rd ed., McGraw–Hill, 2003.
3 Lefebvre, A. H., and Ballal, D. R., Gas Turbine Combustion, CRC Press, 2010.
4 Tillman, T. G., et al., “Mixer-Ejector Nozzle Concepts for High-Speed
Propulsion,” AIAA Journal, Vol. 29, No. 6, 1991.

Lc Ld

A
A*

=
1
M [2

γ + 1 (1 +
γ − 1

2
M2)]

γ + 1
2(γ − 1)

T = ·mVe + (pe − pa)Ae

Δp0
p0

= CL ξ2 δ2 M n
avg

Mavg
ξ

Ve,eff = Ve
p0,out
p0,in

Γ ∼
Δpθ
ρ U

Lc

S =
Γ

UeDe

ηmix = 1 − exp(−k S)

α = kva

∈ [0,1]

Parameter Stage 1 (Sea Level) Stage 2 (Vacuum)

Chamber pressure 70 bar 40 bar

Chamber temperature 3500 K 3400 K

Ambient pressure 101 kPa ≈0 Pa

Specific heat ratio 1.24 1.24

Area ratio 7.3 7.3

New York General Group 21

Multi-Stage Propulsion System with Variable-Geometry Corrugate Lobe Exhaust Architecture for Enhanced Supersonic Thrust Vectoring and Mixing Efficiency

5 Waitz, I. A., and Marble, F. E., “Streamwise Vorticity Generation in High-
Speed Jets,” Journal of Fluid Mechanics, Vol. 244, 1992.
6 Eames, I., and Hunt, J. C. R., “Vortex Dynamics of Lobed Mixers,” Journal of
Fluid Mechanics, Vol. 482, 2003.
7 McCormick, D. C., “Supersonic Jet Mixing Enhancement Using Streamwise
Vorticity,” AIAA Journal, Vol. 30, No. 3, 1992.
8 Deere, K. A., “Summary of Fluidic Thrust Vectoring Research,” AIAA Paper
2003-3800.
9 Mason, M. L., et al., “Non-Mechanical Thrust Vector Control Using
Asymmetric Nozzles,” Journal of Propulsion and Power, Vol. 21, No. 5, 2005.
10 Heiser, W. H., and Pratt, D. T., Hypersonic Airbreathing Propulsion, AIAA,
1994.
11 Shapiro, A. H., The Dynamics and Thermodynamics of Compressible Fluid
Flow, Vol. 1, Wiley, 1953.
12 Hill, P., and Peterson, C., Mechanics and Thermodynamics of Propulsion,
Addison-Wesley, 1992.
13 Presz, W. M., “Lobed Mixer Design and Analysis,” AIAA Journal, Vol. 25,
No. 5, 1987.
14 Mattingly, J. D., Elements of Gas Turbine Propulsion, McGraw–Hill, 2005.
15 Dolling, D. S., “Shock–Boundary Layer Interaction in Supersonic Flows,”
AIAA Journal, Vol. 39, No. 8, 2001.
16 Babinsky, H., and Harvey, J., Shock Wave–Boundary-Layer Interactions,
Cambridge Univ. Press, 2011.
17 Pope, S. B., Turbulent Flows, Cambridge Univ. Press, 2000.
18 Spaid, F. W., and Keener, E. R., “Fluidic Thrust Vectoring,” Journal of
Aircraft, Vol. 32, No. 2, 1995.
19 Zaman, K. B. M. Q., “Compressible Jet Mixing Enhancement,” Physics of
Fluids, Vol. 10, No. 3, 1998.
20 Versteeg, H. K., and Malalasekera, W., An Introduction to Computational
Fluid Dynamics, Pearson, 2007.

Appendix 1

The following is a sample of the program code used in the computer simulation.

"""
Reduced-order computer simulation for:
Multi-Stage Propulsion System with Variable-Geometry Corrugated Lobe Exhaust
Architecture for Enhanced Supersonic Thrust Vectoring and Mixing Efficiency.

What this script does
- Quasi-1D compressible nozzle performance (choked mass flow, isentropic expansion)
- Corrugation-induced total pressure loss (phenomenological, supersonic shock/3D dissipation)
- Streamwise vorticity / circulation proxy and mixing proxy (calibrated so xi=0.6 -> ~12 m^2/s)
- Jet spread-rate multiplier (proxy)
- Thrust vectoring via asymmetric exposure parameter (proxy)

Outputs
- Plots: thrust vs xi, mixing proxy vs xi, trade metric vs xi, vector angle vs asymmetry
- Tables printed to console at key xi values
"""

from __future__ import annotations
import math
import numpy as np
import matplotlib.pyplot as plt

------------------ Core gas dynamics (quasi-1D, isentropic) ------------------
def area_mach(M: float, gamma: float) -> float:
 """Isentropic area ratio A/A* as a function of Mach number M."""
 g = gamma
 term = (2.0 / (g + 1.0)) * (1.0 + (g - 1.0) * 0.5 * M * M)
 return (1.0 / M) * (term ** ((g + 1.0) / (2.0 * (g - 1.0))))

def mach_from_area(area_ratio: float, gamma: float, supersonic: bool = True) -> float:
 """
 Solve A/A*(M) = area_ratio for M using robust bisection.
 For rocket nozzles we normally want the supersonic branch at the exit.
 """
 if area_ratio <= 0:
 raise ValueError("area_ratio must be positive")

 lo, hi = (1.0001, 20.0) if supersonic else (1e-6, 0.9999)

 # Ensure bracket covers solution.
 # For supersonic branch, A/A* decreases near 1 then rises; but for M>1 it is monotonic increasing.
 # So bisection on [1+, hi] is safe as long as hi is large enough.
 for _ in range(140):
 mid = 0.5 * (lo + hi)
 fmid = area_mach(mid, gamma) - area_ratio
 flo = area_mach(lo, gamma) - area_ratio

 if np.sign(fmid) == np.sign(flo):
 lo = mid
 else:
 hi = mid

 return 0.5 * (lo + hi)

def isentropic_T(T0: float, M: float, gamma: float) -> float:
 """Static temperature from total temperature (calorically perfect)."""
 return T0 / (1.0 + (gamma - 1.0) * 0.5 * M * M)

def isentropic_p(p0: float, M: float, gamma: float) -> float:
 """Static pressure from total pressure (calorically perfect)."""
 return p0 / (1.0 + (gamma - 1.0) * 0.5 * M * M) ** (gamma / (gamma - 1.0))

def choked_mdot(P0: float, T0: float, At: float, gamma: float, R: float) -> float:
 """
 Choked mass flow rate for an ideal nozzle:
 mdot = P0*At/sqrt(T0) * sqrt(gamma/R) * (2/(gamma+1))^((gamma+1)/(2*(gamma-1)))
 """
 g = gamma
 return (P0 * At / math.sqrt(T0)) * math.sqrt(g / R) * (2.0 / (g + 1.0)) ** (
 (g + 1.0) / (2.0 * (g - 1.0))
)

------------------ Corrugation / lobes reduced-order closures ------------------
def corrugation_models(
 xi: float,
 A_exit: float,
 r_exit_mean: float,
 M_i: float,
 M_e: float,
 p_i: float,
 rho_i: float,
 U_i: float,
 Ld: float,
) -> tuple[float, float]:
 """
 Phenomenological model for:
 - total-pressure loss across corrugated region (p0_ratio <= 1)
 - streamwise circulation proxy Gamma_raw (m^2/s), later calibrated

 xi in [0,1]: corrugation extent ratio Lc/Ld.
 """

 # Peak wall deflection scaling: representative ~5 deg at exit; scale with A_exit/r_exit_mean.
 delta_e_deg_ref = 5.0
 rel_amp_ref = 0.018 / 0.162 # representative geometry ratio
 rel_amp = A_exit / max(r_exit_mean, 1e-12)

 delta_e = math.radians(delta_e_deg_ref * (rel_amp / rel_amp_ref))

 # Total-pressure loss model:
 # Growth faster than linear with xi (cumulative shock + 3D boundary layer effects).
 # The coefficient is tuned to keep losses "plausible" in reduced-order sense (few % at mid xi).
 C_loss = 1.6
 M_avg = 0.5 * (M_i + M_e)
 dp0_over_p0 = C_loss * (xi**2) * (delta_e**2) * (M_avg**1.3)

 p0_ratio = 1.0 - dp0_over_p0
 p0_ratio = float(np.clip(p0_ratio, 0.65, 1.0))

 # Circulation proxy from circumferential pressure gradient:
 # Gamma_raw ~ (Δp/(rho*U)) * Lc, with Δp scaling with wall deflection and pressure level.
 Lc = xi * Ld
 delta_p = 0.28 * p_i * (delta_e / math.radians(5.0)) * (rel_amp / rel_amp_ref)
 Gamma_raw = 1.2 * (delta_p / (max(rho_i, 1e-12) * max(U_i, 1e-12))) * Lc

 return p0_ratio, Gamma_raw

def mixing_eff(Gamma: float, Ue: float, De: float) -> float:
 """
 Mixing efficiency proxy (0..1). Increases with vortex strength.
 This is a reduced-order surrogate, not a direct scalar dissipation or species mixing measure.
 """
 S = abs(Gamma) / (max(Ue, 1e-12) * max(De, 1e-12))
 return float(1.0 - math.exp(-6.0 * S))

def spread_mult(Gamma: float, Ue: float, De: float) -> float:
 """Jet spread-rate multiplier surrogate (>=1)."""
 S = abs(Gamma) / (max(Ue, 1e-12) * max(De, 1e-12))
 return float(1.0 + 3.5 * S)

------------------ Thrust vectoring via asymmetric exposure ------------------
def thrust_vector(T: float, asym: float, k_tv: float = 0.18) -> tuple[float, float, float]:
 """
 Proxy thrust-vectoring model for asymmetric corrugation exposure.
 asym in [0,1], alpha clipped to +/-10 deg.
 """
 alpha = np.clip(k_tv * asym, -math.radians(10.0), math.radians(10.0))
 Tx = T * math.cos(alpha)
 Ty = T * math.sin(alpha)
 return float(Tx), float(Ty), float(alpha)

------------------ Stage performance wrapper ------------------
def stage_perf(
 Pc: float,
 Tc: float,
 gamma: float,
 MW: float,
 At: float,
 Ae_ratio: float,
 Pa: float,
 xi: float,
 A_exit: float,
 r_exit_mean: float,
 Ld: float,
 Mi: float = 2.1,
) -> dict:
 """
 Compute thrust + mixing proxies for a given stage and corrugation extent xi.
 Returns a dict of performance metrics.
 """
 R = 8314.462618 / MW # J/(kg*K), MW in kg/kmol

 # Baseline exit conditions from isentropic nozzle expansion
 Me = mach_from_area(Ae_ratio, gamma, supersonic=True)
 Te = isentropic_T(Tc, Me, gamma)
 pe = isentropic_p(Pc, Me, gamma)

 ae = math.sqrt(gamma * R * Te)
 Ve = Me * ae

 mdot = choked_mdot(Pc, Tc, At, gamma, R)

 Ae = At * Ae_ratio
 De = math.sqrt(4.0 * Ae / math.pi)

 # Conditions at corrugation initiation station (approx by isentropic state at Mi)
 Ti = isentropic_T(Tc, Mi, gamma)
 pi = isentropic_p(Pc, Mi, gamma)
 ai = math.sqrt(gamma * R * Ti)
 Ui = Mi * ai
 rhoi = pi / (R * Ti)

 # Corrugation effects (loss + circulation proxy)
 p0_ratio, Gamma_raw = corrugation_models(
 xi=xi,
 A_exit=A_exit,
 r_exit_mean=r_exit_mean,
 M_i=Mi,
 M_e=Me,
 p_i=pi,
 rho_i=rhoi,
 U_i=Ui,
 Ld=Ld,
)

 # Calibrate circulation so representative xi=0.6 returns ~12 m^2/s (as used in the paper)
 p0r_ref, G_ref = corrugation_models(
 xi=0.6,
 A_exit=0.018,
 r_exit_mean=0.162,
 M_i=2.1,
 M_e=Me,
 p_i=pi,
 rho_i=rhoi,
 U_i=Ui,
 Ld=Ld,
)
 scale = 12.0 / max(G_ref, 1e-12)
 Gamma = Gamma_raw * scale

 # Map total-pressure loss to reduced effective exit velocity
 Ve_eff = Ve * math.sqrt(p0_ratio)

 # Thrust (momentum + pressure)
 T = mdot * Ve_eff + (pe - Pa) * Ae

 return {
 "mdot": mdot,
 "Me": Me,
 "pe": pe,
 "Ve": Ve,
 "Ve_eff": Ve_eff,
 "T": T,
 "Ae": Ae,
 "De": De,
 "Gamma": Gamma,
 "eta_mix": mixing_eff(Gamma, Ve_eff, De),
 "spr": spread_mult(Gamma, Ve_eff, De),
 "p0_ratio": p0_ratio,
 }

------------------ Main experiment runner ------------------
def main() -> None:
 # Representative parameters used in the paper
 gamma = 1.24
 MW = 22.0
 At = math.pi * (0.060**2) # throat radius 60 mm
 Ae_ratio = 7.3
 r_exit_mean = 0.162
 A_exit = 0.018
 Ld = 0.415

 stage1 = {"name": "Stage 1 (sea-level)", "Pc": 70e5, "Tc": 3500.0, "Pa": 101325.0}
 stage2 = {"name": "Stage 2 (vacuum)", "Pc": 40e5, "Tc": 3400.0, "Pa": 50.0}

 xis = np.linspace(0.0, 0.9, 37)

 def sweep(stage):
 T, mix, spr, p0 = [], [], [], []
 for xi in xis:
 r = stage_perf(
 Pc=stage["Pc"],
 Tc=stage["Tc"],
 gamma=gamma,
 MW=MW,
 At=At,
 Ae_ratio=Ae_ratio,
 Pa=stage["Pa"],
 xi=float(xi),
 A_exit=A_exit,
 r_exit_mean=r_exit_mean,
 Ld=Ld,
)
 T.append(r["T"])
 mix.append(r["eta_mix"])
 spr.append(r["spr"])
 p0.append(r["p0_ratio"])
 return np.array(T), np.array(mix), np.array(spr), np.array(p0)

 T1, mix1, spr1, p01 = sweep(stage1)
 T2, mix2, spr2, p02 = sweep(stage2)

 # Illustrative trade metric: mixing benefit minus weighted loss penalty
 w = 3.5
 J1 = mix1 - w * (1.0 - p01)
 J2 = mix2 - w * (1.0 - p02)

 # Plots
 plt.figure()
 plt.plot(xis, T1 / 1000.0, label=stage1["name"])
 plt.plot(xis, T2 / 1000.0, label=stage2["name"])
 plt.xlabel("Corrugation extent ratio ξ")
 plt.ylabel("Thrust (kN)")

New York General Group 22

Multi-Stage Propulsion System with Variable-Geometry Corrugate Lobe Exhaust Architecture for Enhanced Supersonic Thrust Vectoring and Mixing Efficiency

 plt.title("Thrust vs corrugation extent")
 plt.grid(True)
 plt.legend()
 plt.show()

 plt.figure()
 plt.plot(xis, mix1, label=stage1["name"])
 plt.plot(xis, mix2, label=stage2["name"])
 plt.xlabel("Corrugation extent ratio ξ")
 plt.ylabel("Mixing proxy (0–1)")
 plt.title("Mixing proxy vs corrugation extent")
 plt.grid(True)
 plt.legend()
 plt.show()

 plt.figure()
 plt.plot(xis, J1, label="Stage 1 trade metric")
 plt.plot(xis, J2, label="Stage 2 trade metric")
 plt.axvline(0.6, linestyle="--")
 plt.xlabel("Corrugation extent ratio ξ")
 plt.ylabel("J = mix_proxy - w*(1-p0_ratio)")
 plt.title("Trade metric (illustrative)")
 plt.grid(True)
 plt.legend()
 plt.show()

 print("Argmax xi (Stage1, Stage2):", float(xis[np.argmax(J1)]), float(xis[np.argmax(J2)]))

 # Tables
 key_xis = [0.0, 0.3, 0.6, 0.8, 0.9]
 for st in (stage1, stage2):
 print("\n", st["name"])
 print("xi Thrust[kN] mix_proxy p0_ratio")
 for xi in key_xis:
 r = stage_perf(
 Pc=st["Pc"],
 Tc=st["Tc"],
 gamma=gamma,
 MW=MW,
 At=At,
 Ae_ratio=Ae_ratio,
 Pa=st["Pa"],
 xi=xi,
 A_exit=A_exit,
 r_exit_mean=r_exit_mean,
 Ld=Ld,
)
 print(f"{xi:0.1f} {r['T']/1000:9.2f} {r['eta_mix']:0.3f} {r['p0_ratio']:0.3f}")

 # Vectoring demo at xi=0.6 for Stage 1
 r_opt = stage_perf(
 Pc=stage1["Pc"],
 Tc=stage1["Tc"],
 gamma=gamma,
 MW=MW,
 At=At,
 Ae_ratio=Ae_ratio,
 Pa=stage1["Pa"],
 xi=0.6,
 A_exit=A_exit,
 r_exit_mean=r_exit_mean,
 Ld=Ld,
)
 asym_levels = np.linspace(0.0, 1.0, 6)
 alpha_deg = []
 lateral_kN = []
 for a in asym_levels:
 Tx, Ty, alpha = thrust_vector(r_opt["T"], float(a))
 alpha_deg.append(math.degrees(alpha))
 lateral_kN.append(Ty / 1000.0)

 plt.figure()
 plt.plot(asym_levels, alpha_deg)
 plt.xlabel("Asymmetry command (0–1)")
 plt.ylabel("Thrust vector angle (deg)")
 plt.title("Vectoring authority at ξ=0.6 (reduced-order)")
 plt.grid(True)
 plt.show()

 print("\nVectoring at xi=0.6 (Stage 1):")
 for a, ad, ty in zip(asym_levels, alpha_deg, lateral_kN):
 print(f"asym={a:0.1f} alpha={ad:5.2f} deg lateral={ty:6.2f} kN")

if __name__ == "__main__":
 main()

Appendix 2

The following are the detailed results.

Thrust Performance (Figure 1): The thrust–corrugation-extent graph
demonstrates that thrust decreases gradually as the corrugation extent ratio

 increases, reflecting the cumulative impact of three-dimensional
flow turning, oblique shock interactions, and enhanced viscous dissipation
introduced by the corrugated lobe geometry. As the corrugated section becomes
longer, the effective total pressure at the nozzle exit is reduced, which in turn
lowers the effective exhaust velocity and hence the momentum component of
thrust. This reduction remains relatively modest over intermediate corrugation
extents, indicating that moderate corrugation can be accommodated without
severe performance penalties. The similarity in the trend for both sea-level and
near-vacuum stages shows that the thrust sensitivity to corrugation length is
primarily governed by internal compressible losses rather than ambient back
pressure, underscoring that the principal efficiency cost of the corrugated
architecture is intrinsic to the nozzle flow physics.

Mixing Enhancement (Figure 2): The mixing enhancement graph shows a
monotonic increase in the mixing-efficiency proxy with increasing corrugation
extent, illustrating how a longer corrugated region strengthens the generation and
persistence of streamwise vortices within the exhaust plume. In the model, these
vortices arise from circumferential pressure gradients imposed by the lobed
geometry and their integrated strength grows with the axial length over which the
corrugation is applied. As the non-dimensional vortex strength increases, the
mixing proxy approaches saturation, representing accelerated entrainment and
more rapid breakdown of the jet’s potential core. The close correspondence
between the curves for different stages indicates that the enhancement
mechanism is largely geometric and non-dimensional in nature, and thus
relatively insensitive to the absolute operating pressure or temperature of the
stage.

Trade-Off Behavior (Figure 3): The trade-off graph combines the beneficial
effect of enhanced mixing with the detrimental effect of total-pressure loss,
producing a curve with a clear interior maximum. At small corrugation extents,
the rapid rise in vortex-induced mixing outweighs the relatively small pressure
losses, leading to an overall increase in the combined performance metric.
Beyond a mid-range corrugation extent, however, additional increases in
corrugation length produce diminishing returns in mixing while the loss
mechanisms intensify, causing the combined metric to decline. This behavior
highlights the existence of an optimal corrugation extent at which plume-
conditioning benefits are maximized for an acceptable thrust penalty. The precise
location of this optimum depends on how strongly mixing performance is
weighted relative to thrust efficiency, but the presence of a peak itself

demonstrates that partial corrugation is fundamentally more effective than either
a smooth nozzle or a fully corrugated divergent section.

Thrust Vectoring Capability (Figure 4): The thrust vectoring graph illustrates
how asymmetric exposure of the corrugated lobe geometry produces a
controllable deflection of the thrust vector. As the asymmetry command
increases, the thrust vector angle increases approximately linearly, reflecting the
proportional relationship between geometric asymmetry and lateral momentum
redistribution assumed in the reduced-order model. The saturation of the curve
near the upper limit indicates a practical bound on vectoring authority, imposed
to represent structural and flow-stability constraints. Physically, this result shows
that once a sufficiently strong vortical structure is established by an intermediate
corrugation extent, differential activation of the corrugated region can redirect
the exhaust plume and generate meaningful lateral forces without mechanical
nozzle gimbaling, providing a viable mechanism for non-mechanical thrust
vector control in multi-stage propulsion systems.

ξ = Lc /Ld

New York General Group 23

Multi-Stage Propulsion System with Variable-Geometry Corrugate Lobe Exhaust Architecture for Enhanced Supersonic Thrust Vectoring and Mixing Efficiency

Figure 1 (Thrust Performance):

New York General Group 24

Multi-Stage Propulsion System with Variable-Geometry Corrugate Lobe Exhaust Architecture for Enhanced Supersonic Thrust Vectoring and Mixing Efficiency

Figure 2 (Mixing Enhancement):

New York General Group 25

Multi-Stage Propulsion System with Variable-Geometry Corrugate Lobe Exhaust Architecture for Enhanced Supersonic Thrust Vectoring and Mixing Efficiency

Figure 3 (Trade-Off Behavior):

New York General Group 26

Multi-Stage Propulsion System with Variable-Geometry Corrugate Lobe Exhaust Architecture for Enhanced Supersonic Thrust Vectoring and Mixing Efficiency

Figure 4 (Thrust Vectoring Capability):

New York General Group 27

